首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   7篇
  国内免费   26篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   4篇
  2012年   11篇
  2011年   6篇
  2010年   4篇
  2009年   13篇
  2008年   11篇
  2007年   17篇
  2006年   15篇
  2005年   11篇
  2004年   6篇
  2003年   6篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   14篇
  1998年   14篇
  1997年   18篇
  1996年   6篇
  1995年   20篇
  1994年   11篇
  1993年   12篇
  1992年   10篇
  1991年   22篇
  1990年   16篇
  1989年   10篇
  1988年   11篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   15篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
排序方式: 共有378条查询结果,搜索用时 31 毫秒
1.
Summary In tobacco (Nicotiana tabacum L.), anther-derived doubled haploid populations have been shown to exhibit large amounts of unexpected genetic variation and a severe depression in cured leaf yield when compared to conventionally inbred genotypes from comparable sources. A previous study had predicted that the yield depression observed in a doubled haploid population-derived from a near homozygous cultivar, NC95, might be overcome through a recurrent selection program. In the current study, progress from three cycles of full-sib family selection for improved yield in an anther-culture derived population of NC95 was measured, as well as the remaining genetic variation within the population. A design II experiment was conducted in the population following three cycles of selection. Results indicate that the NC95 yield level has been recovered in the third selection cycle population. Although most of the genetic variation in the population appears to be exhausted, the additive genetic variance among maternal half-sib families for yield is significant, and it appears that continued yield improvement can be made through recurrent selection. Significant additive-genetic variance for yield was found among maternal half-sib families but was essentially zero among the paternal half-sib families, suggesting that remaining genetic variation is not being transmitted through pollen. One possible explanation results from the phenomenon of DNA amplification that can occur during the anther culture process, and that may enable extraordinary recombinational events and reduce the viability of male gametes.  相似文献   
2.
The improvement of the induction rate in Citrus anther culture is important for taking practical advantage of the haploid potential in breeding. The influence of polyamines on anther culture of Citrus clementina, cv Nules, with particular attention to the free, soluble and insoluble-conjugated polyamine levels, has been investigated. Putrescine, spermidine and putrescine plus spermidine, were added to the standard induction medium. Before culture, spermidine was the most abundant among the free polyamines detected in anthers. The exogenous supply of either putrescine or spermidine, either independently or combined, effected greater uptake and accumulation of polyamines. The addition of 2 mM spermidine to the medium stimulated gametic embryogenesis in clementine Nules, whereas putrescine did not influence embryo production. Regenerants were mostly tri-haploids; a few doubled-haploids and no haploid plants were obtained.  相似文献   
3.
低温预处理对水稻花药培养中花药壁褐变的结构影响   总被引:7,自引:0,他引:7  
药壁褐变是影响花药离体培养效率的因素。研究了粳稻品种台中6(5OryzasatvaL.)花药培养前低温预处理对药壁褐变的影响,观察了花药褐变前后药壁各层的变化及褐变对小孢子发育的作用。结果表明:药壁褐变主要发生在表皮与药室内壁。10℃低温预处理在花药培养前期可有效延缓表皮与药室内壁膜结构的降解速度,减缓褐变发生;花药经低温处理后,药壁中层细胞膨大,绒毡层降解速度减缓,有利于花粉脱分化。药壁褐变会影响药腔内小孢子的活力和继续发育,但不是制约花粉愈伤组织形成的关键因素。  相似文献   
4.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   
5.
Recent theoretical work has shown that long‐lived hosts are expected to evolve higher equilibrium levels of disease resistance than shorter‐lived hosts, but questions of how longevity affects the rate of resistance evolution and the maintenance of polymorphism remain unanswered. Conventional wisdom suggests that adaptive evolution should occur more slowly in long‐lived organisms than in short‐lived organisms. However, the opposite may be true for the evolution of disease‐resistance traits where exposure to disease, and therefore the strength of selection for resistance increases with longevity. In a single locus model of innate resistance to a frequency‐dependent, sterilizing disease, longer lived hosts evolved resistance more rapidly than short‐lived hosts. Moreover, resistance in long‐lived hosts could only be polymorphic for more costly and more extreme resistance levels than short‐lived hosts. The increased rate of evolution occurred in spite of longer generation times because longer‐lived hosts had both a longer period of exposure to disease as well as higher disease prevalence. Qualitatively similar results were found when the model was extended to mortality‐inducing diseases, or to density‐dependent transmission modes. Our study shows that the evolutionary dynamics of host resistance is determined by more than just levels of resistance and cost, but is highly sensitive to the life‐history traits of the host.  相似文献   
6.
以台中65及其7个F1花粉不育近等基因系为材料,对水稻亚种间杂种F1裂药性及其与小穗育性的关系进行了研究。结果表明,杂种F1的裂药性受花粉不育基因互作控制。不同杂合座位内等位花粉不育基因互作导致杂种F1花药不开裂的程度不同,S-b座位导致杂种F1部分花药不开裂;不同杂合座位问非等位花粉不育基因互作明显降低杂种F1的裂药程度;杂种F1中含杂合花粉不育基因座位数越多,其裂药指数越小,裂药程度越低,含三个杂合花粉不育基因座位的杂种F1裂药指数为2.27,35.3%的花药不开裂。杂种F1花药不开裂的原因随其所含的杂合花粉不育基因座位种类和数目不同而异。杂种F1裂药程度的下降显著减少落在其柱头上的花粉总数和萌发的花粉数。杂种F1裂药指数和结实率呈极显著的正相关关系。  相似文献   
7.
This is the first report on the production of double-haploid chickpea embryos and regenerated plants through anther culture using Canadian cultivar CDC Xena (kabuli) and Australian cultivar Sonali (desi). Maximum anther induction rates were 69% for Sonali and 63% for CDC Xena. Under optimal conditions, embryo formation occurred within 15–20 days of culture initiation with 2.3 embryos produced per anther for CDC Xena and 2.0 embryos per anther for Sonali. For anther induction, the following stress treatments were used: (1) flower clusters were treated at 4°C for 4 days, (2) anthers were subjected to electric shock treatment of three exponentially decaying pulses of 50–400 V with 25 μF capacitance and 25 Ω resistance, (3) anthers were centrifuged at 168–1,509g for 2–15 min, and finally (4) anthers were cultured for 4 days in high-osmotic pressure (563 mmol) liquid medium. Anthers were then transferred to a solid embryo development medium and, 15–20 days later, embryo development was observed concomitant with a small amount of callus growth of 0.1–3 mm. Anther-derived embryos were regenerated on plant regeneration medium. Electroporation treatment of anthers enhanced root formation, which is often a major hurdle in legume regeneration protocols. Cytological studies using DAPI staining showed a wide range of ploidy levels from haploid to tetraploid in 10–30-day-old calli. Flow cytometric analysis of calli, embryos and regenerated plants showed haploid profiles and/or spontaneous doubling of the chromosomes during early regeneration stages.  相似文献   
8.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   
9.
林木花药培养研究进展及展望   总被引:15,自引:0,他引:15  
多数林木在遗传上高度杂合,给育种和遗传研究带来很多不便。与农作物相比,林木花药培养的意义更为重大。对国内外林木花药培养的现状及影响花药培养的主要因素进行了概述,讨论了其在21世纪分子生物技术时代的应用前景,旨在促进林木花药培养技术的完善并开拓其应用领域。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号