首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The connections between the genes that cause hybrid incompatibilities and the physiological processes disrupted in hybrids by these incompatibilities are not well understood. The interactions between proteins in the electron transport system (ETS) in the copepod, Tigriopus californicus, have emerged as a potential model system to explore such connections. In this study, the effects on hybrid fitness of 3 different nuclear loci encoding proteins of the ETS are examined in hybrid copepods obtained from crosses of genetically divergent populations of this species. The potential interactions between these genes and mitochondrial-encoded proteins of the ETS are also explored; these interactions have been shown to have diverged functionally between these populations in other studies. Large deviations from Mendelian inheritance are found in genotypic ratios at each of the 3 loci in adults but not in nauplii, demonstrating genotype-based selection during development. The length of developmental time of hybrids appears to influence the pattern of deviations in these loci, likely in conjunction with levels of competition in these crosses. The major finding of this study is that in repeated crosses, the nature of deviations at these ETS loci shows dramatic differences suggesting that slight perturbations in initial conditions can dramatically shift the patterns of selection at these ETS loci in interpopulation hybrids.  相似文献   

2.
The deleterious effects of hybridization are a serious concern for the conservation and management of species, particularly when populations mix as a result of human activity. Outbreeding depression is the typical result observed in early-generation interpopulation hybrids of Tigriopus californicus. We examined both controlled crosses and long-term, freely-mating, experimental hybrid populations composed of southern California populations Royal Palms (RP) and San Diego (SD). Controlled crosses included parentals plus all reciprocal F1, F2, F3 and backcross cohorts, and only F2 cohorts showed significant declines in fitness compared to midparent values, indicating recovery in the F3. For long-term studies, four treatment groups were initiated: 100% RP, 100% SD, 50% RP: 50% SD, and 80% RP: 20% SD. Replicates were surveyed at 3-month intervals for morphometric, census and fitness measures. Fitness of hybrid treatments showed declines relative to midparent values followed by rapid recovery, with two hybrid replicates ultimately showing higher fitness than parentals at the final 15-month time-point (up to 20 generations). In contrast, both males and females in hybrid treatments were larger than the midparent for several morphometric characters at the first time-point, and smaller than the midparent at the final time-point, indicating a possible tradeoff between fitness and body size. Microsatellites for a subset of samples revealed extensive introgression in hybrid treatments. This adds to previous evidence that hybrid breakdown in early generations may be a temporary phenomenon followed by the persistence of highly fit recombinant genotypes.  相似文献   

3.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

4.
The fitness of hybrids might be compromised as a result of intrinsic isolation and/or because they fall between ecological niches due to their intermediate phenotypes (“extrinsic isolation”). Here, we present data from several crosses (parental crosses, F1, F2, and backcrosses) between the two host races of Lochmaea capreae on willow and birch to test for extrinsic isolation, intrinsic isolation, and environmentally dependent genetic incompatibilities. We employed a reciprocal transplant design in which offspring were raised on either host plant and their survival was recorded until adulthood. We also applied joint‐scaling analysis to determine the genetic architecture of hybrid inviability. The relative fitness of the backcrosses switched between environments; furthermore, the additive genetic–environment interaction was detected as the strongest effect in our analysis. These results provide strong evidence that divergent natural selection has played a central role in the evolution of hybrid dysfunction between host races. Joint‐scaling analysis detected significant negative epistatic effects that are most evident in the poor performance of F2‐hybrids on willow, indicating signs of intrinsic isolation. We did not find any evidence that genetic incompatibilities are manifested independently of environmental conditions. Our findings suggest the outcome of natural hybridization between these host races is mainly affected by extrinsic isolation and a weak contribution of intrinsic isolation.  相似文献   

5.
Hybridization between genetically divergent populations is an important evolutionary process, with an outcome that is difficult to predict. We used controlled crosses and freely mating hybrid swarms, followed for up to 30 generations, to examine the morphological and fitness consequences of interpopulation hybridization in the copepod Tigriopus californicus. Patterns of fitness in two generations of controlled crosses were partly predictive of long‐term trajectories in hybrid swarms. For one pair of populations, controlled crosses revealed neutral or beneficial effects of hybridization after the F1 generation, and hybrid swarm fitness almost always equalled or exceeded that of the midparent. For a second pair, controlled crosses showed F2 hybrid breakdown, but increased fitness in backcrosses, and hybrid swarm fitness deviated both above and below that of the parentals. Nevertheless, individual swarm replicates exhibited different fitness trajectories over time that were not related in a simple manner to their hybrid genetic composition, and fixation of fitter hybrid phenotypes was not observed. Hybridization did not increase overall morphological variation, and underlying genetic changes may have been masked by phenotypic plasticity. Nevertheless, one type of hybrid swarm exhibited a repeatable pattern of transgressively large eggsacs, indicating a positive effect of hybridization on individual fecundity. Additionally, both parental and hybrid swarms exhibited common phenotypic trends over time, indicating common selective pressures in the laboratory environment. Our results suggest that, in a system where much work has focused on F2 hybrid breakdown, the long‐term fitness consequences of interpopulation hybridization are surprisingly benign.  相似文献   

6.
Local adaptation is often invoked to explain hybrid zone structure, but empirical evidence of this is generally rare. Hybrid zones between two poeciliid fishes, Xiphophorus birchmanni and X. malinche, occur in multiple tributaries with independent replication of upstream‐to‐downstream gradients in morphology and allele frequencies. Ecological niche modelling revealed that temperature is a central predictive factor in the spatial distribution of pure parental species and their hybrids and explains spatial and temporal variation in the frequency of neutral genetic markers in hybrid populations. Among populations of parentals and hybrids, both thermal tolerance and heat‐shock protein expression vary strongly, indicating that spatial and temporal structure is likely driven by adaptation to local thermal environments. Therefore, hybrid zone structure is strongly influenced by interspecific differences in physiological mechanisms for coping with the thermal environment.  相似文献   

7.
Early-generation hybrid fitness is difficult to interpret because heterosis can obscure the effects of hybrid breakdown. We used controlled reciprocal crosses and common garden experiments to distinguish between effects of heterosis and nuclear and cytonuclear epistasis among morphotypes and advanced-generation hybrid derivative populations in the Piriqueta caroliniana (Turneraceae) plant complex. Seed germination, growth, and sexual reproduction of first-generation hybrids, inbred parental lines, and outbred parental lines were compared under field conditions. Average vegetative performance was greater for hybrids than for inbred lines, and first-season growth was similar for hybrids and outbred parental lines. Hybrid survival surpassed that of inbred lines and was equal to or greater than outbred lines' survival, and more F(1) than parental plants reproduced. Reductions in hybrid fitness due to Dobzhansky-Muller incompatibilities (epistasis among divergent genetic elements) were expressed as differences in vegetative growth, survival, and reproduction between plants from reciprocal crosses for both F(1) and backcross hybrid generations. Comparing performance of hybrids against parental genotypes from intra- and interpopulation crosses allowed a more robust prediction of F(1) hybrids' success and more accurate interpretations of the genetic architecture of F(1) hybrid vigor.  相似文献   

8.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

9.
Many terrestrial ectothermic species exhibit limited variation in upper thermal tolerance across latitude. However, these trends may not signify limited adaptive capacity to increase thermal tolerance in the face of climate change. Instead, thermal tolerance may be similar among populations because behavioural thermoregulation by mobile organisms or life stages may buffer natural selection for thermal tolerance. We compared thermal tolerance of adults and embryos among natural populations of Drosophila melanogaster from a broad range of thermal habitats around the globe to assess natural variation of thermal tolerance in mobile vs. immobile life stages. We found no variation among populations in adult thermal tolerance, but embryonic thermal tolerance was higher in tropical strains than in temperate strains. We further report that embryos live closer to their upper thermal limits than adults – that is, thermal safety margins are smaller for embryos than adults. F1 hybrid embryos from crosses between temperate and tropical populations had thermal tolerance that matched that of tropical embryos, suggesting the dominance of heat‐tolerant alleles. Together, our findings suggest that thermal selection has led to divergence in embryonic thermal tolerance but that selection for divergent thermal tolerance may be limited in adults. Further, our results suggest that thermal traits should be measured across life stages to better predict adaptive limits.  相似文献   

10.
Krebs RA  Thompson KA 《Genetica》2006,128(1-3):217-225
To demonstrate how insects may adapt to ecologically relevant levels of heat stress, we performed artificial selection on the ability of Drosophila melanogaster to fly after an exposure to a high but non-lethal thermal stress. Both tolerance and intolerance to heat stress arose very quickly, as only a few generations of selection were necessary to cause significant separation between high and low lines for heat tolerance. Estimates of heritability based on the lines artificially selected for increased flight ability ranged from 0.024 to 0.052, while estimates of heritability based on the lines selected for the inability to fly after heat stress varied between 0.035 and 0.091. Reciprocal F1 crosses among these lines revealed strong additive effects of one or more autosomes and a weaker X-chromosome effect. This variation apparently affected flight specifically; neither survival to a more extreme stress nor knockdown by high temperature changed between lines selected for high and low heat tolerance as measured by flight ability. As the well-studied heat-shock response is associated with heat tolerance as measured by survival and knockdown, the aspects of the stress physiology that actually affect flight ability remains unknown.  相似文献   

11.
The evolution of intrinsic postzygotic isolation can be explained by the accumulation of Dobzhansky‐Muller incompatibilities (DMI). Asymmetries in the levels of hybrid inviability and hybrid sterility are commonly observed between reciprocal crosses, a pattern that can result from the involvement of uniparentally inherited factors. The mitochondrial genome is one such factor that appears to participate in DMI in some crosses but the frequency of its involvement versus biparentally inherited factors is unclear. Here we assess the relative importance of incompatibilities between nuclear factors (nuclear‐nuclear) versus those between mitochondrial and nuclear factors (mito‐nuclear) in a species that lacks sex chromosomes. We used a Pool‐seq approach to survey three crosses among genetically divergent populations of the copepod, Tigriopus californicus, for regions of the genome that are affected by hybrid inviability. Results from reciprocal crosses suggest that mito‐nuclear incompatibilities are more common than nuclear‐nuclear incompatibilities overall. These results suggest that in the presence of very high levels of nucleotide divergence between mtDNA haplotypes, mito‐nuclear incompatibilities can be important for the evolution of intrinsic postzygotic isolation. This is particularly interesting considering this species lacks sex chromosomes, which have been shown to harbor a particularly high number of nuclear‐nuclear DMI in several other species.  相似文献   

12.
A possible effect of interpopulation hybridization is either outbreeding depression, as a consequence of breakdown of coadapted gene complexes which can increase developmental instability (DI) of the traits, or increased heterozygosity, which can reduce DI. One of the principal methods commonly used to estimate DI is the variability of fluctuating asymmetry (FA). We analysed the effect of interpopulation hybridization in Drosophila subobscura through the variability in the wing size and the FA of wing length and width for both sexes in parental, F1 and F2 generations. The results of the wing size per se in intra- and interpopulation hybrids of D. subobscura do not explicitly reveal the significance of either of the two hypotheses. However, the results of the FA of the wing traits give a different insight. The FA of wing length and width generally increases in interpopulation crosses in F1 with respect to the FA in the parental generation, which suggests the possibility that outbreeding depression occurred in the first generation after the hybridization event. We generally observed that the FA values for the wing length and width of interpopulation hybrids were higher in F1 and F2 generations, compared to intrapopulation hybrids in same generations. These results suggest that the association between coadaptive genes with the same evolutionary history are the most probable mechanism that maintains the developmental homeostasis in Drosophila subobscura populations.  相似文献   

13.
Whereas disruptive selection imposed by heterogeneous environments can lead to the evolution of extrinsic isolating barriers between diverging populations, the evolution of intrinsic postzygotic barriers through divergent selection is less certain. Long‐lived species such as trees may be especially slow to evolve intrinsic isolating barriers. We examined postpollination reproductive isolating barriers below the species boundary, in an ephemeral hybrid zone between two successional varieties of the landscape‐dominant Hawaiian tree, Metrosideros polymorpha, on volcanically active Hawai'i Island. These archipelago‐wide sympatric varieties show the weakest neutral genetic divergence of any taxon pair on Hawai'i Island but significant morphological and ecological differentiation consistent with adaptation to new and old lava flows. Cross‐fertility between varieties was high and included heterosis of F1 hybrids at the seed germination stage, consistent with a substantial genetic load apparent within varieties through low self‐fertility and a lack of self‐pollen discrimination. However, a partial, but significant, barrier was observed in the form of reduced female and male fertility of hybrids, especially backcross hybrids, consistent with the accumulation of genetic incompatibilities between varieties. These results suggest that partial intrinsic postzygotic barriers can arise through disruptive selection acting on large, hybridizing populations of a long‐lived species.  相似文献   

14.
Invasive bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are reproductively isolated in their native range, but form a bimodal, multigenerational hybrid swarm within the Mississippi River Basin (MRB). Despite observed F1 hybrid superiority in experimental settings, effects of postzygotic selection on bighead and silver carp hybrids have not been tested in a natural system. Individual parent and hybrid genotypes were resolved at 57 species‐specific loci and used to evaluate postzygotic selection for body condition (Wr) and female reproductive potential (presence of spawning stage gonads and gonadosomatic index [GSI]) in the MRB during 2009–2011. Body condition in the Marseilles Reach, Illinois River declined with a decrease in species‐specific allele frequency from 1.0 to 0.4 for each species and early generation hybrids (F1, F2, and first‐generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation backcrosses) and parentals. Proportions of stage IV and stage V (spawning stage) female gonads differed between bighead and silver carp, but not among parentals and their early and late generation hybrids within the MRB. Mean GSI values did not differ between parentals and hybrids. Because reproductive potential did not differ between hybrids and parentals, our results suggest that early generation hybrids occur in low frequency either as a factor of poor condition (Wr) and postreproductive survival, infrequent reproductive encounters by parental bighead and silver carp, or selection pressures acting on juvenile or immature life stages. Our results suggest that a combination of genetic and environmental factors may contribute to the postzygotic success of bighead and silver carp hybrids in the Mississippi River Basin.  相似文献   

15.
The heterogametic sex tends to be rare, absent, sterile, or deformed in F1 hybrid crosses between species, a pattern called Haldane's rule (HR). The introgression of single genes or chromosomal regions from one drosophilid species into the genetic background of another have shown that HR is most often associated with fixed genetic differences in inter-specific crosses. However, because such introgression studies have involved species diverged several hundred thousand generations from a common ancestor, it is not clear whether HR attends the speciation process or results from the accumulation of epistatically acting genes postspeciation. We report the first evidence for HR prior to speciation in crosses between two populations of the red flour beetle, Tribolium castaneum, collected 931 km apart in Colombia and Ecuador. In this cross, HR is manifested as an increase in the proportion of deformed males compared to females and the expression of HR is temperature dependent. Neither population, when crossed to a geographically distant population from Japan, exhibits HR at any rearing temperature. Using joint-scaling analysis and additional data from backcrosses and F2's, we find that the hybrid incompatibilities and the emergence of HR are concurrent processes involving interactions between X-linked and autosomal genes. However, we also find many examples of incompatibilities manifest by F2 and backcross hybrids but not by F1 hybrids and most incompatibilities are not sex different in their effects, even when they involve both X-autosomal interactions and genotype-by-environment interactions. We infer that incipient speciation in flour beetles can occur with or without HR and that significant hybrid incompatibilities result from the accumulation of epistatically acting gene differences between populations without differentially affecting the heterogametic sex in F1 hybrids. The temperature dependence of the incompatibilities supports the inference that genotype-by-environment interactions and adaptation to different environments contribute to the genetic divergence important to postzygotic reproductive isolation.  相似文献   

16.
Abstract .The genetic incompatibilities that underlie F2 hybrid breakdown and reproductive isolation between al-lopatric populations may be susceptible to environmental interactions. Here we show that epistatic interactions between cytochrome c ( CYC ) alleles and mitochondrial DNA (mtDNA) variation are dramatically influenced by environmental temperature in interpopulation hybrids of the copepod Tigriopus californicus . CYC is a nuclear-encoded gene that functionally interacts with electron transport system (ETS) complexes composed in part of mtDNA-encoded proteins. Previous studies have provided evidence for functional coadaptation between CYC and ETS complex IV (cytochrome c oxidase) and for cytoplasmic effects on the fitness of CYC genotype in copepod hybrids. In this study, selection on CYC genotype is shown to continue into advanced generation hybrids (F2-F8) increasing the likelihood that CYC itself is involved in the interaction (and not a linked factor). Relative viabilities varied markedly between copepods raised in two different temperature/light regimes. These results suggest that both intrinsic coadaptation and extrinsic selection will influence the outcome of natural hybridizations between populations. Furthermore, the results indicate that the fitness of particular hybrid genotypes depends on additional non-mtDNA encoded genes that interact with CYC.  相似文献   

17.
Our understanding of the development of intrinsic reproductive isolation is still largely based on theoretical models and thorough empirical studies on a small number of species. Theory suggests that reproductive isolation develops through accumulation of epistatic genic incompatibilities, also known as Bateson–Dobzhansky–Muller (BDM) incompatibilities. We can detect these from marker transmission ratio distortion (TRD) in hybrid progenies of crosses between species or populations, where TRD is expected to result from selection against heterospecific allele combinations in hybrids. TRD may also manifest itself because of intragenomic conflicts or competition between gametes or zygotes. We studied early stage speciation in Arabidopsis lyrata by investigating patterns of TRD across the genome in F2 progenies of three reciprocal crosses between four natural populations. We found that the degree of TRD increases with genetic distance between crossed populations, but also that reciprocal progenies may differ substantially in their degree of TRD. Chromosomes AL6 and especially AL1 appear to be involved in many single- and two-locus distortions, but the location and source of TRD vary between crosses and between reciprocal progenies. We also found that the majority of single- and two-locus TRD appears to have a gametic, as opposed to zygotic, origin. Thus, while theory on BDM incompatibilities is typically illustrated with derived nuclear alleles proving incompatible in hybrid zygotes, our results suggest a prominent role for distortions emerging before zygote formation.  相似文献   

18.
Various models purporting to explain natural hybrid zones make different assumptions about the fitness of hybrids. One class of models assumes that hybrids have intrinsically low fitness due to genetic incompatibilities, whereas other models allow hybrid fitness to vary across natural environments. We used the intrinsic rate of increase to assess lifetime fitness of hybrids between two species of montane plants Ipomopsis aggregata and Ipomopsis tenuituba planted as seed into multiple field environments. Because fitness is predicted to depend upon genetic composition of the hybrids, we included F1 hybrids, F2 hybrids, and backcrosses in our field tests. The F2 hybrids had female fitness as high, or higher, than expected under an additive model of fitness. These results run counter to any model of hybrid zone dynamics that relies solely on intrinsic nuclear genetic incompatibilities. Instead, we found that selection was environmentally dependent. In this hybrid zone, cytoplasmic effects and genotype-by-environment interactions appear more important in lowering hybrid fitness than do intrinsic genomic incompatibilities between nuclear genes.  相似文献   

19.
As species struggle to keep pace with the rapidly warming climate, adaptive introgression of beneficial alleles from closely related species or populations provides a possible avenue for rapid adaptation. We investigate the potential for adaptive introgression in the copepod, Tigriopus californicus, by hybridizing two populations with divergent heat tolerance limits. We subjected hybrids to strong heat selection for 15 generations followed by whole-genome resequencing. Utilizing a hybridize evolve and resequence (HER) technique, we can identify loci responding to heat selection via a change in allele frequency. We successfully increased the heat tolerance (measured as LT50) in selected lines, which was coupled with higher frequencies of alleles from the southern (heat tolerant) population. These repeatable changes in allele frequencies occurred on all 12 chromosomes across all independent selected lines, providing evidence that heat tolerance is polygenic. These loci contained genes with lower protein-coding sequence divergence than the genome-wide average, indicating that these loci are highly conserved between the two populations. In addition, these loci were enriched in genes that changed expression patterns between selected and control lines in response to a nonlethal heat shock. Therefore, we hypothesize that the mechanism of heat tolerance divergence is explained by differential gene expression of highly conserved genes. The HER approach offers a unique solution to identifying genetic variants contributing to polygenic traits, especially variants that might be missed through other population genomic approaches.  相似文献   

20.
We investigated transmission ratio distortion within an Icelandic population of Arabidopsis lyrata using 16 molecular markers unlinked to the S-locus. Transmission ratio distortion was found more often than expected by chance at the gametic level, but not at the genotypic or zygotic level. The gametic effect may be due to meiotic drive or selection acting postmeiotically. At the gametic level, 10.9% of the tests were significant, which is substantially lower than earlier observed in an interpopulation cross (allowing for differences in power)-suggesting that the high level of transmission ratio distortion in the interpopulation cross is due to population divergence. It is also substantially lower than previously observed in intrapopulation crosses at the self-incompatibility locus, suggesting inherent fitness differences of the self-incompatibility alleles. We discuss the possible role of deleterious alleles accumulating at loci under balancing selection. Zygotic effects play a larger role in the interpopulation cross than in the intrapopulation crosses suggesting that Dobzhansky-Muller incompatibilities may be accumulating between the widely diverged populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号