首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
  2020年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2002年   2篇
排序方式: 共有16条查询结果,搜索用时 359 毫秒
1.
目的:研究HepG2细胞中线粒体形状动态变化过程中的功能变化及其初步分子机制。方法:HepG2细胞经过HBSS缓冲液饥饿处理后,使用线粒体氧化磷酸化解偶联剂CCCP、脂肪酸受体GPR40/120激动剂GW9508、脂肪酸油酸OA和钙离子载体Ionomycin等4种不同药物处理,通过共聚焦显微镜观察和流式细胞分析的手段检测细胞中线粒体形状和功能发生的改变。然后,通过基因沉默Drp1,Mff或者Fis1蛋白,初步研究调控线粒体形状改变的分子机制。结果:经过CCCP和GW9508处理细胞中产生甜甜圈线粒体,而OA和Ionomycin处理产生球状线粒体。CCCP,OA和Ionomycin使线粒体去极化,CCCP、GW9508、OA或者Ionomycin单独处理在一定程度上影响细胞中活性氧化簇ROS。甜甜圈线粒体产生由Drp1介导,而球状线粒体形成依赖于Drp1和Mff。结论:线粒体的形态与其功能相互联系,Drp1和Mff蛋白对于细胞线粒体形状动态改变过程中形状的调整和适应具有很重要的作用。  相似文献   
2.
介绍了细胞内分子马达的能量转化途径,几种纳米分子马达如驱动蛋白、动力蛋白、肌球蛋白和旋转马达的结构和功能,并展望了分子马达对人类的贡献。  相似文献   
3.
利用FPLC技术从萱草花粉中鉴定并纯化了动力蛋白,研究了它的酶学性质及部分生物化学性质。结果如下:纯化的类动力蛋白分子量为100kD,等电点pI=6·15和6·80。在280nm波长激发下,最大的荧光发射波长是346nm。荧光光谱分析结合紫外吸收光谱及导数光谱分析推断它含有色氨酸和酪氨酸残基。药理学性质研究表明巯基可能在酶的活性中心起重要作用。  相似文献   
4.
动力蛋白激活蛋白(dynactin) 是一个与胞浆内动力蛋白的功能相关的多亚基复合物.动力蛋白(dynein)为向微管负端运输的马达蛋白,其多种功能包括细胞核迁移、有丝分裂纺锤体定位以及细胞间期和有丝分裂的细胞骨架再组装.Dynamitin,是一个50 kD的动力蛋白激活蛋白亚单位, 对于稳定动力蛋白激活蛋白复合物是非常重要的.为研究这种稳定性机制,分析了dynamitin的序列,并揭示dynamitin的一些DNA序列与ATP酶的Walker A 和 Walker B 序列具有同源性.纯化的谷胱甘肽巯基转移酶标签蛋白dynamitin和无此标签的蛋白dynamitin都特异性显示了ATP酶活性.DNA序列Walker A的失活突变可废除dynamitin蛋白的ATP酶活性,而Walker B 序列无此作用.因此,突变实验进一步证实dynamitin蛋白的ATP酶活性.ATP酶活性的动力学研究结果表明Km为 125.78μmol/L和 Kcat 为7.4 min-1  相似文献   
5.
封面故事     
如果把细胞看作城市,微管和微丝看作四通八达的市内公路,那分子马达则是在公路上高速行驶的货车。细胞内的生命物质,如信使RNA、蛋白质、细胞器和囊泡等,均需借助于分子马达和微管、微丝系统,才能在细胞中正确地定位并发挥功能,分子马达也因其重要的功能成为研究的热点。  相似文献   
6.
《生物学通报》2009,44(3):50-50
我国科学家在细胞生物学研究中又获新进展。2月9日,国际著名学术期刊《自然-细胞生物学》(Nature Cell Biology)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员朱学良和美国华盛顿卡耐基研究所教授郑诣先的合作研究结果:Nudel和胞质动力蛋白在纺锤体基质组装中发挥重要作用,进而调控有丝分裂纺锤体的正确形成。  相似文献   
7.
自从20年前光镊技术被Ashkin、Chu及其同事发明[1],该技术已被应用于各种生物学研究并由此获得丰富信息.例如应力下生物高分子的行为[2],DNA连接酶如何译码或如何消化DNA[3~6],动力蛋白如何沿分子轨道移动[7~8],以及RNA和蛋白质分子如何折叠/展开[9~11].通过对单个分子的操纵,光镊技术可用于探索这些生物系统在分子层面的工作模式.在本期222页,Case等描述了该技术的另一精巧应用.揭示了凝聚子蛋白质如何产生紧凑形式的DNA[12].  相似文献   
8.
萱草花粉动力蛋白的分离与特性   总被引:2,自引:0,他引:2  
动力蛋白(dynamin)是一类具有可被微管激活的GTP酶活性的新型马达蛋白,被证明在动物细胞受体介导的内吞小泡的形成,突触小泡再循环及高尔基体的囊泡运输中起关键作用。近几年,一些植物细胞也被发现有动力蛋白类似物。本研究通过分子量鉴定和免疫印迹法证明萱草(Hemerocallis fulva L.)花粉中存在动力蛋白,其分子量为100kD。经过高度纯化的花粉动甩具有GTPase活性,且可被牛脑微管激活1.64倍;电子显微镜表明,花粉动力蛋白可自我组装成环状结构。  相似文献   
9.
动力蛋白(dynamin)是一类具有可被微管激活的GTP酶活性的新型马达蛋白,被证明在动物细胞受体介导的内吞小泡的形成、突触小泡再循环及高尔基体的囊泡运输中起关键作用.近几年,一些植物细胞也被发现有动力蛋白类似物.本研究通过分子量鉴定和免疫印迹法证明萱草(Hemerocallis fulva L.)花粉中存在动力蛋白,其分子量为100 kD;经过高度纯化的花粉动力蛋白仍具有GTPase活性,且可被牛脑微管激活1.64倍;电子显微镜观察结果表明,花粉动力蛋白可自我组装成环状结构.  相似文献   
10.
蚂蚁能够举起比自身重100倍的物体,是生物中的"大力士"。但蚂蚁肌肉的组成及结构与人的横纹肌并无根本区别,都是利用肌动蛋白-肌球蛋白之间的相互作用产生拉力。这种作用机制在单细胞的真核生物中就已经存在,说明肌肉的进化已经有很长的历史。除了肌肉收缩,这套系统还在细胞内"货物"的运输、细胞运动和细胞分裂中起重要作用。蚂蚁之所以"力气大"是因为一个简单的几何原理,即物体尺寸变化时,线性、面积和体积变化的速度不同。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号