首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有19条查询结果,搜索用时 517 毫秒
1.
Strain TEA, a strictly anaerobic, motile rod with one to four lateral flagella and a crystalline surface layer was isolated from a mixed culture that completely reduces chlorinated ethenes to ethene. The organism coupled reductive dehalogenation of tetrachloroethene or trichloroethene to cis-1,2-dichloroethene to growth, using molecular hydrogen as the electron donor. It was unable to grow fermentatively or in the presence of tri- or tetrachloroethene with glucose, pyruvate, lactate, acetate or formate. The 16S rDNA sequence of strain TEA was 99.7% identical to that of Dehalobacter restrictus. The two organisms thus are representatives of the same species or the same genus within the Bacillus/Clostridium subphylum of the gram-positive bacteria.  相似文献   
2.
Although anaerobic bioremediation of chlorinated organic contaminants in the environment often requires exogenous supply of hydrogen as an electron donor, little is known about the ability of hydrogen-producing bacteria to grow in the presence of chlorinated solvents. In this study, 18 Clostridium strains including nine uncharacterized isolates originating from chlorinated solvent contaminated groundwater were tested to determine their ability to fermentatively produce hydrogen in the presence of three common chlorinated aliphatic groundwater contaminants: 1,2-dichloroethane (DCA), 1,1,2-trichloroethane (TCA), and tetrachloroethene (PCE). All strains produced hydrogen in the presence of at least 7.4 mM DCA, 2.4 mM TCA, and 0.31 mM PCE. Some strains produced hydrogen in media containing concentrations as high as 29.7 mM DCA, 9.8 mM TCA, and 1.1 mM PCE. None of the strains biotransformed chlorinated solvents under the conditions tested. Results demonstrate that many Clostridium species are chlorinated solvent tolerant, producing hydrogen even in the presence of high concentrations of DCA, TCA, and PCE. These findings have important implications for bioremediation of contaminated soil and groundwater.  相似文献   
3.
Taxonomic assignments of anaerobic dichloromethane (DCM)-degrading bacteria remain poorly constrained but are important for understanding the microbial diversity of organisms contributing to DCM turnover in environmental systems. We describe the taxonomic classification of a novel DCM degrader in consortium RM obtained from pristine Rio Mameyes sediment. Phylogenetic analysis of full-length 16S rRNA gene sequences demonstrated that the DCM degrader was most closely related to members of the genera Dehalobacter and Syntrophobotulus, but sequence similarities did not exceed 94% and 93%, respectively. Genome-aggregate average amino acid identities against Peptococcaceae members did not exceed 66%, suggesting that the DCM degrader does not affiliate with any described genus. Phylogenetic analysis of conserved single-copy functional genes supported that the DCM degrader represents a novel clade. Growth strictly depended on the presence of DCM, which was consumed at a rate of 160 ± 3 μmol L?1 d?1. The DCM degrader attained 5.25 × 107 ± 1.0 × 107 cells per μmol DCM consumed. Fluorescence in situ hybridization revealed rod-shaped cells 4 ± 0.8 μm long and 0.4 ± 0.1 μm wide. Based on the unique phylogenetic, genomic, and physiological characteristics, we propose that the DCM degrader represents a new genus and species, ‘Candidatus Dichloromethanomonas elyunquensis’.  相似文献   
4.
5.
The mass emissions rate of contaminants from nonaqueous-phase liquids (NAPLs) is a driving factor in remediation efforts, whether those efforts are designed to remove, transform, or stabilize the entrapped NAPL or down-gradient aqueous concentrations. Enhancement of mass flux from NAPL source zones has been previously reported in the presence of microbial reductive dechlorination activity in systems containing NAPL with a low proportion of tetrachloroethene (PCE) or a low residual saturation (e.g., 2%). The results reported here demonstrate reductive dechlorination of PCE at residual saturations of 35%, obtained under two different column flow velocities and NAPL configurations. Mass flux in biotic columns was approximately 45% greater than that in uninoculated columns, due to both the presence of daughter products and higher concentrations of PCE in the effluent from biotic columns. Daughter product concentrations were greater in columns with NAPL emplaced only in the lower quarter compared to those with NAPL throughout, and in columns run at the slower velocity. The elevated PCE concentrations in biotic column effluents suggest the influence of microbially generated surfactants, which was supported by surface tension measurements. These results demonstrate the potential significance of bioactivity within NAPL source zones on NAPL longevity and down-gradient aqueous concentrations.  相似文献   
6.
A feasibility evaluation identified chemical reduction and biostimulation as a potential remedy for a plume containing hexavalent chromium (Cr(VI)) and tetrachloroethene (PCE) at an industrial site in southern California. The objectives of this laboratory study were to determine the stoichiometry of calcium polysulfide (CaSx) reaction with Cr(VI) in the presence of sediment, the effect of CaSx on the potential for in situ biological reductive dechlorination of PCE, and the potential to reduce Cr(VI) and PCE by addition of only an electron donor. Approximately 1 L of CaSx solution (containing 50 g S2-/L) was required per 1000 L of groundwater containing 45 mg/L of Cr(VI) (i.e., 1.8 mol S2- per mol Cr(VI)). The sediment also exerted a sulfide demand (≥0.38 g S2 - per kg sediment), but at a slower rate than the Cr(VI). In microcosms prepared with lactate, corn syrup, soybean oil, or methanol, but no CaSx, the Cr(VI) was biologically reduced in the treatments with lactate and corn syrup, but much more slowly than with CaSx. Even after 20 months of incubation, no significant reductive dechlorination of PCE occurred in any of the microcosms, including those in which the Cr(VI) was removed with CaSx. Bioaugmentation was tested with the microcosms that received lactate and corn syrup (following 20 months of incubation), using an enrichment culture that actively dechlorinates trichloroethene. PCE dechlorination began within 1 month in the lactate-only treatment; in the corn syrup-amended treatment, PCE dechlorination occurred in only one of the three bottles. However, no PCE dechlorination occurred following bioaugmentation of the lactate and corn syrup microcosms that were initially treated with CaSx, indicating that CaSx (and/or its reaction products) exerted a negative impact on the chlororespiring microbes. This outcome highlights the need to evaluate sites on a case-by-case basis when in situ chemical treatment is applied prior to microbial reductive dechlorination.  相似文献   
7.
Carbon stable isotope fractionation of tetrachloroethene (PCE) and trichloroethene (TCE) was investigated during reductive dechlorination. Growing cells of Sulfurospirillum multivorans, Sulfurospirillum halorespirans, or Desulfitobacterium sp. strain PCE-S, the respective crude extracts and the abiotic reaction with cyanocobalamin (vitamin B(12)) were used. Fractionation of TCE (alphaC=1.0132-1.0187) by S. multivorans was more than one order of magnitude higher than values previously observed for tetrachloroethene (PCE) (alphaC=1.00042-1.0017). Similar differences in fractionation were observed during reductive dehalogenation by the close relative S. halorespirans with alphaC=1.0046-1.032 and alphaC=1.0187-1.0229 for PCE and TCE respectively. TCE carbon isotope fractionation (alphaC=1.0150) by the purified PCE-reductive dehalogenase from S. multivorans was more than one order of magnitude higher than fractionation of PCE (alphaC=1.0017). Carbon isotope fractionation of TCE by Desulfitobacterium sp. strain PCE-S (alphaC=1.0109-1.0122) as well as during the abiotic reaction with cyanocobalamin (alphaC=1.0154) was in a similar range to previously reported values for fractionation by mixed microbial cultures. In contrast with previous results with PCE, no effects due to rate limitations, uptake or transport of the substrate to the reactive site could be observed during TCE dechlorination. Our results show that prior to a mechanistic interpretation of stable isotope fractionation factors it has to be carefully verified how other factors such as uptake or transport affect the isotope fractionation during degradation experiments with microbial cultures.  相似文献   
8.
For the full scale implementation of in situ anaerobic bioremediation of tetrachloroethene (PCE) in groundwater, the following issues must be addressed: which organic substrates at which concentration would be most effective in promoting dechlorination and are economical; how far the substrate, electron acceptor, and nutrients can be transported in the aquifer; and the placement of delivery and recovery wells for distributing these amendments. In a microcosm study, almost all of the tested inexpensive substrates supported reductive dechlorination of PCE through vinyl chloride (VC) under methanogenic conditions. A minimum of about 60 mg L−1 of organic carbon was needed to dechlorinate 23 μM PCE with a single feeding. In a second microcosm study dechlorination stopped at 1,2-dichloroethene (DCE) in microcosms fed higher concentrations of several substrates. At the highest concentrations the substrates inhibited DCE production. Three field tracer tests were conducted to evaluate methods to distribute the amendments across the aquifer. The natural groundwater gradient is not sufficient to distribute substrate evenly. Groundwater injection at 60 times the natural flux rate increased the distribution of substrate. A mixing strategy of cross-gradient injection further increased the distribution of the substrate. Ammonia-nitrogen, sulfate, and phosphate were retarded relative to the substrate and inorganic tracer. Received 30 October 1995/ Accepted in revised form 07 June 1996  相似文献   
9.
Desulfomonile tiedjei, a strict anaerobe capable of reductively dechlorinating 3-chlorobenzoate, also dechlorinates tetrachloroethene and trichloroethene. It is not known, however, if the aryl and aliphatic dechlorination activities are catalyzed by the same enzymatic system. Cultures induced for 3-chlorobenzoate activity dechlorinated tetrachloroethene and trichloroethene to lower chlorinated products while uninduced parallel cultures did not dechlorinate either substrate. The observed rate of PCE dechlorination in induced cultures was 22 µmol h–1 g protein–1, which is considerably faster than previous rates obtained with defined cultures of this organism. These results show that both dechlorination activities are co-induced and therefore, that the dechlorination mechanisms may share at least some components.Abbreviations PCE tetrachloroethene - TCE trichloroethene - cis-DCE cis-dichloroethene - trans-DCE trans-dichloroethene - 3FBz 3-fluorobenzoate - 3ClBz 3-chlorobenzoate  相似文献   
10.
Cloning of pceA, the gene of tetrachloroethene (PCE)-reductive dehalogenase, was undertaken from environmental DNA. Two genes were amplified using PCR primer deduced from pceA. Functional expression of these genes was unsuccessful in Escherichia coli, but PceA1 synthesized in vitro was enzymatically active. In recombinant E. coli, PceA1 formed a complex with host DnaK and caused filamentous growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号