首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11596篇
  免费   1028篇
  国内免费   675篇
  2024年   17篇
  2023年   161篇
  2022年   188篇
  2021年   231篇
  2020年   374篇
  2019年   455篇
  2018年   440篇
  2017年   369篇
  2016年   385篇
  2015年   389篇
  2014年   584篇
  2013年   882篇
  2012年   339篇
  2011年   588篇
  2010年   578篇
  2009年   684篇
  2008年   774篇
  2007年   740篇
  2006年   606篇
  2005年   568篇
  2004年   447篇
  2003年   468篇
  2002年   347篇
  2001年   219篇
  2000年   184篇
  1999年   192篇
  1998年   204篇
  1997年   160篇
  1996年   134篇
  1995年   159篇
  1994年   135篇
  1993年   124篇
  1992年   106篇
  1991年   92篇
  1990年   75篇
  1989年   74篇
  1988年   71篇
  1987年   80篇
  1986年   57篇
  1985年   78篇
  1984年   112篇
  1983年   69篇
  1982年   98篇
  1981年   65篇
  1980年   61篇
  1979年   46篇
  1978年   26篇
  1977年   18篇
  1976年   21篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
2.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
3.
The photon flux autocorrelation function of a fluorescent label attached to a bacterial motor shaft is calculated for the case in which the bacterial motor is considered to be actively but idly rotating. It is shown that even when the fluorescent label has a very short lifetime, fluorescence correlation spectroscopy should provide a useful tool for determining the rate of revolution of the bacterial motor under various solution conditions.  相似文献   
4.
5.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
6.
Jean-Marc Versel  Guy Mayor 《Planta》1985,164(1):96-100
The elongation rate, the gradient of the local elongation rate and the surface pH of maize roots were measured over 12 h. A data bank was constituted by storing these values. By sorting these results on the basis of different elongation rates, different classes of root were obtained. Two classes were chosen: the low-growth roots and the high-growth roots. The mean growth of these two root classes was stable with time and differed significantly from one another. The surface pH of the elongation zone was the same for the roots of these two classes, but the roots selected for their higher growth rate had a larger acid efflux in this zone.  相似文献   
7.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
8.
9.
  1. The growing pace of environmental change has increased the need for large‐scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.
  2. We used multi‐annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.
  3. We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full‐analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.
  4. This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.
  相似文献   
10.
Summary We have previously used surface iodination to discriminate between the protein patterns of epithelial cell surfaces in uteri of rabbits receptive (Day 6.5) or nonreceptive (Day 4) to nidation (Ricketts et al. 1984). In this paper, we describe application of the same technique to the trophoblastic surface of rabbit blastocysts collected on the same days of pregnancy. Analysis of labelled proteins by polyacrylamide-gel electrophoresis under denaturing conditions did not reveal qualitative differences between the two days of pregnancy. Scanning densitometry was used to quantitate the area under each protein peak on an autoradiogram; these areas were used as variables in statistical analysis of the protein pattern of individual animals. Quantitative differences between the protein patterns of the two surfaces were detected by canonical variate analysis of the pattern of relative areas of labelled protein peaks. In proteins separated on 7.5% gels, this statistical analysis correctly assigned blastocysts from 8 out of 10 animals to one of two groups according to day of pregnancy. The discrimination was not statistically significant, however, in protein patterns on 12.5% gels, used to give better separation in the lower range of molecular weights. The same analysis in the uterus unequivocally separated the surface iodination patterns from these same days of pregnancy. Thus the changes detected by surface iodination appear to be less pronounced on the trophectoderm than on the uterine epithelium in relation to the time of ovoimplantation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号