首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2009年   2篇
  2008年   1篇
  2002年   1篇
  2000年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
SYNOPSIS. A new carotenoid, manixanthin , was isolated from a bleached, autolysed culture of the marine cryptomonad Chroomonas salina grown on glycerol in light, after the culture showed disappearance of the chlorophylls and carotenoids normally produced. Manixanthin lacked carbonyl, ester, and epoxy groups in chemical tests, whilst its spectroscopic properties indicated a conjugated nonaene chromophore. In its chromatographic mobility, manixanthin closely resembled alloxanthin, the major normal xanthophyll of the cryptomonad. The iodine-catalysed photostereomutation of manixanthin produced the same equilibrium mixture of cis -isomers as that given by similar treatment of alloxanthin. This mixture of isomers completely lacked the all-trans alloxanthin and contained ∼60% manixanthin. It was concluded that manixanthin is an unusually stable cis -isomer of alloxanthin, and is presumably produced in the culture medium by the action of light on alloxanthin released by autolysed cells of the cryptomonad. The unusual stability of manixanthin relative to alloxanthin was investigated by effecting partial stereoisomerizations under conditions using either of heat, light, or iodine, and evidence was obtained for a series of at least 10 isomers with a trend of stability increase from alloxanthin to manixanthin. It was inferred that manixanthin may be 9,9'-di cis -alloxanthin.  相似文献   
2.
Although the potential of photosyntheticmicroorganisms for production of various metabolitesand in environmental bioremediation is recognized,their practical application has been limited by thedifficulty in supplying light efficiently tophotobioreactors. Various types of photobioreactorwith high illumination to volume ratios have beenproposed, but most are limited by cost, mass transfer,contamination, scale-up or a combination of these.The problem of light supply to photobioreactorscan be solved by developing photosynthetic cellcultivation systems where light is either substitutedor supplemented. Many strains of photosynthetic cellsare capable of heterotrophic growth under darkconditions and their heterotrophic culture can be usedfor efficient production of biomass and somemetabolites. However, light is absolutely required forefficient production of some metabolites. In suchcases, there is a need to supplement the heterotrophicwith photoautotrophic metabolism. Inphotoheterotrophic (mixotrophic) culture, thephotoautotrophic and heterotrophic metabolisms can beexploited for efficient production of usefulmetabolites but it has many problems such as processoptimization in terms of making a balance between thephotoautotrophic and heterotrophic metabolism. Another promising system is the sequentialheterotrophic/ photoautotrophic cultivation system,where the cells are cultivated heterotrophically tohigh concentrations and then passed through aphotobioreactor for accumulation of the desiredmetabolite(s). Furthermore, cyclicphotoautotrophic/heterotrophic cultivation system canbe used to achieve continuous cell growth underday/night cycles. This involves cultivating thecells photoautotrophically using solar light duringthe day and then adding controlled amount of organiccarbon source during the night for heterotrophicgrowth. In this review, these various systems arediscussed with some specific examples.  相似文献   
3.
Development of a solar-powered microbial fuel cell   总被引:1,自引:0,他引:1  
Aims: To understand factors that impact solar‐powered electricity generation by Rhodobacter sphaeroides in a single‐chamber microbial fuel cell (MFC). Methods and Results: The MFC used submerged platinum‐coated carbon paper anodes and cathodes of the same material, in contact with atmospheric oxygen. Power was measured by monitoring voltage drop across an external resistance. Biohydrogen production and in situ hydrogen oxidation were identified as the main mechanisms for electron transfer to the MFC circuit. The nitrogen source affected MFC performance, with glutamate and nitrate‐enhancing power production over ammonium. Conclusions: Power generation depended on the nature of the nitrogen source and on the availability of light. With light, the maximum point power density was 790 mW m?2 (2·9 W m?3). In the dark, power output was less than 0·5 mW m?2 (0·008 W m?3). Also, sustainable electrochemical activity was possible in cultures that did not receive a nitrogen source. Significance and Impact of the Study: We show conditions at which solar energy can serve as an alternative energy source for MFC operation. Power densities obtained with these one‐chamber solar‐driven MFC were comparable with densities reported in nonphotosynthetic MFC and sustainable for longer times than with previous work on two‐chamber systems using photosynthetic bacteria.  相似文献   
4.
Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F685/F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.  相似文献   
5.
Cells of potato (Solanum tuberosum L.) were obtained which were capable of photoautotrophic growth in liquid suspension culture under a photon flux density of 90–110 μmol m?2 s?1 PAR and in an atmosphere enriched with 2% CO2. These photoautotrophic cells contained between 100 to 200 μg Chl (g fresh weight)?1 and fixed CO2 at a maximum rate of 16 μmol CO2 (g fresh weight)?1h?1. In order to obtain cells capable of photoautotrophic growth it was necessary to adapt highly chlorophyllous heterotrophic cells (>50 μg Chl (g fresh weight)?1) for growth in medium with 2.5 g sucrose 1?1 (photomixotrophic cells). The photomixotropic cells had a Chl content of ca 100 μg Chl (g fresh weight)?1 and were capable of photosynthetic activity which allowed them to survive after sugars had been depleted from the medium. It was from the photomixotrophic cells that cells capable of photoautotrophic growth were obtained. Heterotrophic cells initially established in liquid medium with 25 g sucrose I?1 from chlorophyllous callus contained about 50 to 150 μg Chl (g fresh weight)?1. However, after 5 to 10 passages the Chl content decreased to a maximum of 15 μg Chl (g fresh weight)?1. These cells could not be adapted to photomixotrophic or photoautotrophic growth. These cells also were not able to regain Chl or initiate high rates of CO2 fixation during the stationary phase of growth as did photomixotrophic cells or chlorophyllous heterotrophic cells. The loss of Chl exhibited by the cells during adaption to heterotrophic growth could be attributed at least in part to unbalanced growth (when cell division and growth exceeds Chl accumulation). Sucrose appeared to have an inhibitory effect directly on photosynthesis independent of Chl accumulation.  相似文献   
6.
Responses of the photosynthetic activity of Phaeodactylum tricornutum (Bacillariophyta) to organic carbon glycerol were investigated. The growth rate, photosynthetic pigments, 77 K fluorescence spectra, and chloroplast ultrastructure of P. tricornutum were examined under photoautotrophic, mixotrophic, and photoheterotrophic conditions. The results showed that the specific growth rate was the fastest under mixotrophic conditions. The cell photosynthetic pigment content and values of Chl a/Chl c were reduced under mixotrophic and photoheterotrophic conditions. The value of carotenoid/Chl a was enhanced under mixotrophic conditions, but was decreased under photoheterotrophic conditions. In comparison with photoautotrophic conditions, the fluorescence emission peaks and fluorescence excitation peaks were not shifted. The relative fluorescence of photosystem (PS) Ⅰ and PS Ⅱ and the values of F6851F710 and F685/F738 were decreased. Chloroplast thylakoid pairs were less packed under mixotrophic and photoheterotrophic conditions. There was a strong correlation between degree of chloroplast thylakoid packing and the excitation energy kept in PS Ⅱ. These results suggested that the PS Ⅱ activity was reduced by glycerol under mixotrophic conditions, thereby leading to repression of the photosynthetic activity.  相似文献   
7.
The growth characteristics and nutrient removal fromsynthetic wastewater by Rhodobacter sphaeroides,Chlorella sorokiniana and Spirulinaplatensis were investigated under aerobic dark(heterotrophic) and aerobic light (photoheterotrophic)conditions. Both in terms of economy and efficiency,aerobic dark conditions were the best for wastewatertreatment using R. sphaeroides and C.sorokiniana, but light was necessary with S.platensis. Neither growth nor nutrient removalcharacteristics of the cells were affected insynthetic wastewater with as high as 10 000 ppmacetate, 1000 ppm propionate, 700 ppm nitrate and 100 ppmphosphate. Although R. sphaeroides and C. sorokiniana showed good growth in syntheticwastewater containing 400 ppm of ammonia, S.platensis was completely inhibited.When grown as a monoculture, none of thestrains could simultaneously remove acetate,propionate, ammonia, nitrate and phosphate from thewastewater. R. sphaeroides could remove allthe above nutrients except nitrate, but the rate of removal was relatively low. The rate of nutrientsremoval by C. sorokiniana was higher, but theorganism could not remove propionate; S.platensis could efficiently remove nitrate, ammoniaand phosphate, but none of the organic acids. A mixedculture of R. sphaeroides and C.sorokiniana was therefore used for simultaneousremoval of organic acids, nitrate, ammonia andphosphate. The optimum ratio of the cells depended onthe composition of the wastewater.  相似文献   
8.
Photoheterotrophic and photoautotrophic cell suspension cultures were raised from a callus tissue derived from a Morinda lucida Benth. plant (Rubiaceae). The cultures were characterized with regard to fresh weight, dry weight, cell number, pH, chlorophyll and quinoid natural products. The amount of lipoquinones (phylloquinone, -tocopherol, plastoquinone, ubiquinone) isolated from the photoautotrophic cultures matched the amount detected in an intact leaf. Anthraquinone glycosides which are found in the roots of Morinda plants were not present in the photoautotrophic culture. The photoheterotrophic culture contained only trace amounts of these pigments. Abundant anthraquinone synthesis was observed when photoautotrophic and photoheterotrophic suspension cultures were transferred into darkness, provided sucrose was present in the medium. Induction of synthesis of anthraquinone pigments coincided with a rapid disappearance of lipoquinones from the culture. Thus, in the suspension culture, photoautotrophy correlates with lipoquinone synthesis and heterotrophy correlates with anthraquinone synthesis. This reflects the situation in the intact plants where lipoquinones are chloroplast-associated whereas anthraquinones occur in the roots.Abbreviation HPLC high-performance liquid chromatography  相似文献   
9.
Methods of regulating the ratio of photoautotrophic to heterotrophic growth rates in photoheterotrophic culture of Euglena gracilis were investigated. In normal photoheterotrophic culture (in the presence of excess organic carbon), the cells grew mainly by organic carbon assimilation (heterotrophic metabolism). The relative contribution of photoautotrophic metabolism increased with the increase in the light supply coefficient, the increase in the CO2 concentration in the aeration gas and the decrease in the feed rate of organic carbon source. However, limiting the organic carbon supply was the most effective method of shifting the metabolic balance to the photoautotrophic side. In the presence of excess organic carbon source, the -tocopherol contents of the cells in photoheterotrophic culture were low even when the light supply coefficient and CO2 concentration in the aeration gas were high. By limiting the organic carbon supply to the photoheterotrophic culture, the intracellular content of -tocopherol increased to the same level as those obtained in photoautotrophic cultures.  相似文献   
10.
Photosystem 1 (PS1) enriched preparations have been extracted from the cyanobacterium Chlorogloea fritschii grown either in darkness or in the light. Absorption spectra show that the main chlorophyll peak has shifted from 678 nm in PS1 from light grown cells to 675 nm in PS1 from dark grown cells. Fluorescence spectra show a similar blue shift in wavelength maximum from 690 nm to 678 nm and the fluorescence intensity is higher in PS1 from dark grown cells. Allophycocyanin is present in PS1 from light grown cells, but absent from preparations from C. fritschii grown in the dark. P700: chlorophyll a ratios of the preparations from light and dark grown cells are 1:35 and 1:80 respectively, all P700 being photoactive. The results are interpreted to suggest that allophycocyanin is not attached to PS1 in dark grown C. fritschii, neither is all chlorophyll arranged in such a way as to ensure efficient energy transfer to P700.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号