首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   7篇
  国内免费   5篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1994年   1篇
  1985年   2篇
排序方式: 共有75条查询结果,搜索用时 62 毫秒
1.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   
2.
In the spring of 2007, a serious disease on amaranth was noticed in several farms in the major amaranth production area in central Taiwan. Abundant oospores were found in the disease tissues. A species of Phytophthora was consistently isolated from disease tissues. The organism formed abundant oospores with smooth walls and with amphigynous antheridia in single culture. Sporangia were partially deciduous with short‐ to medium‐length pedicels. Morphological characteristics of this organism did not match any reported Phytophthora species, and the organism was named Phytophthora amaranthi. Pathogenicity tests and molecular characterization confirmed the identity of the organism as a new pathogen of amaranth and a new species of Phytophthora.  相似文献   
3.
The genus Olpidiopsis of the Oomycota includes several species that are aquatic parasites and hyperparasites. Despite their widespread occurrence and potential ecological importance, only a handful of these species has been subjected to phylogenetic investigations, so far. Most species have not been observed and reported for several decades. In the current study, the freshwater diatom parasite Olpidiopsis gillii (de Wild.) Friedmann was rediscovered from the river Main in Germany and investigated for its phylogenetic placement using nuclear small ribosomal subunit (SSU) sequences. The absence of a zoospore diplanetism is a characteristic of the genus Olpidiopsis, which is in contrast to the diplanetism observed in species of Ectrogella. The phylogenetic reconstruction revealed that Olpidiopsis gillii is a basal lineage within the oomycetes, grouping together with the recently-described marine diatom parasite Olpidiopsis drebesii with high support, and loosely associated with Olpidiopsis species parasitising red algae. However, as there are no sequence data available for the type species of both Olpidiopsis and Ectrogella the taxonomic assignment of these simple holocarpic parasites of algae and diatoms remains fraught with uncertainty.  相似文献   
4.
Exogenous ergosterol and cholesterol were found to affect the growth and lipogenesis of the oomycete fungusPythium debaryanum, which is unable to synthesize de novo steroid compounds. These sterols stimulated the growth of the fungus during its submerged cultivation in glucose-peptone medium. This was accompanied by the shortening of the lag phase, the lengthening of the period of active growth, and by a 3.7-or 4.3-fold increase in the maximum biomass in response to the addition of ergosterol or cholesterol, respectively. In the presence of ergosterol, the cellular content of polyenoic fatty acids increased, and the relative content of eicosapolyenoic fatty acids reached 31.4% of the total amount of fatty acids in cells. Conversely, cholesterol decreased the cellular content of polyenoic acids, and the relative content of eicosapolyenoic acids fell to 19.6% of the total amount of fatty acids. It may be inferred that exogenous sterols enhance the yield of pharmacologically active polyenoic acids because of the growth stimulation.  相似文献   
5.
In tomato soilless culture, plant-disease optimal control and growth promotion are achieved when the rhizosphere is heavily colonized by the biocontrol agent Pythium oligandrum. Discrepancies in performance are generally attributed to the poor persistence of P. oligandrum on roots. In this study, three selected strains of P. oligandrum were introduced into the rhizosphere of greenhouse-grown tomato plants, and their persistence was assessed by DNA macroarray hybridization and real-time PCR. The experimental data from DNA detection and plate counting were compared. PCR-based methods detected P. oligandrum throughout the 6-month growing season, whereas plate counting indicated its presence only over the first 3 months. Moreover, the DNA array method provided information about the various Pythium species present in the rhizosphere: P. dissotocum was frequently detected on roots of plants, without distinction between plants inoculated or not inoculated with the antagonist. The detection of other Pythium species was noticed sporadically (P. ultimum, P. sylvaticum and P. intermedium), independent of the treatment. Even though the yield enhancement is not significant throughout the entire growing season, data obtained from epidemiological studies demonstrate an enhancement of P. oligandrum persistence on the rhizosphere of plants and less use of mycoparasitism.  相似文献   
6.
Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.  相似文献   
7.
One explanation for the extraordinary diversity of tropical forest trees is that density-dependent mortality from herbivores or pathogens puts locally rare species at an advantage. Density-dependent mortality of seeds and small seedlings is particularly intense in tropical forests, but its causes remain uncertain. Here, we show experimentally that pathogens from the Oomycota are associated with intense mortality in seedlings of a neotropical tree, Sebastiana longicuspis . Seedlings in untreated plots experienced eight times higher mortality compared with seedlings in plots treated with fungicide. Mortality was strongly density dependent: in fungicide-treated plots survival was unaffected by density, but survival in unsprayed plots was over three times higher at low density. Density-dependent mortality observed in a simultaneous, non-manipulative study was highly transient, suggesting that short-term observational studies may underestimate the intensity and form of pathogen-induced mortality. If such effects are widespread, plant pathogens may play a key role in maintaining and structuring tropical diversity.  相似文献   
8.
Chemical investigation of the mycelium of Edenia gomezpompae, a newly discovered endophytic fungus isolated from the leaves of Callicarpa acuminata (Verbenaceae) collected from the ecological reserve El Eden, Quintana Roo, Mexico, resulted in the isolation of four naphthoquinone spiroketals, including three new compounds and palmarumycin CP2 (4). We elucidated the structures of the metabolites by extensive NMR spectroscopy studies, including DEPT, COSY, NOESY, HSQC, HMBC, and chiroptical methods. The trivial names proposed for these compounds are preussomerin EG1 (1), preussomerin EG2 (2) and preussomerin EG3 (3). In addition, the X-ray data for 4 were obtained. The bioactivity of the mycelial organic extracts and the pure compounds was tested against three endophytic fungi (Colletotrichum sp., Phomopsis sp., and Guignardia manguifera) isolated from the same plant species (C. acuminata, Verbenaceae) and against four economically important phytopathogenic microorganisms (two fungoid oomycetes, Phythophtora capsici and Phythophtora parasitica, and the fungi Fusarium oxysporum and Alternaria solani). Spiroketals 1-3 displayed significant growth inhibition against all the phytopathogens. IC50 values for the four phytopathogens were from 20 to 170 microg/ml. Palmarumycin CP2 (4) was not bioactive against any of the fungi tested. Compound 1 showed the strongest bioactivity. The acetylated derivatives of preussomerin EG1 (1), 1a and 1b, were obtained and their biological activity was tested on endophytes and phytopathogens. Preussomerin EG1 1, 1a and 1b exhibited significant bioactivity against all microorganisms tested with the exception of Alternaria solani. This is the first report of allelochemicals with antifungal activity from the newly discovered endophytic fungus E. gomezpompae.  相似文献   
9.
The genus Pythium,with slightly over 280 described species,has been classified traditionally with other filamentous,coenocytic,sporangia-producing fungi as "Phycomyetes".However,with recent advances in chemical,ultrastructural and molecular studies,Pythium spp.are now considered as "fungus-like organisms" or "pseudo-fungi" and are placed in the Kingdom Chromista or Kingdom Straminopila,distinct from the true fungi of the Kingdom Fungi or Kingdom Mycota.They are widely distributed throughout the world as soil saprophytes or plant pathogens.Because of the warm moist maritime climate,Taiwan,China,is especially rich in Pythium species.To date,48 species of Pythium have been reported from Taiwan,China,with the dominant species being Py.vexans,Py.spinosum,Py.splendens,Py.aphanidermatum,Py.dissotocum and Py.acanthicum.There is no definite geographical distribution of Pythium spp.in Taiwan,China.Twenty nine species of Pythium have proven to be plant pathogens attacking a wide variety of woody and herbaceous plants primarily causing pre-and post-emergence seedling damping-off,root rot,stem rot and rotting of fruits,tubers and ginger rhizomes,resulting in serious economic losses.The most important plant pathogenic species include Py.aphanidermatum and Py.Myriotylum,which are most active during the hot and wet summer months;whereas Py.splendens,Py.spinosum,Py.ultimum and Py.irregulare cause the greatest damage in the cool winter.Most Pythium spp.are non-specific pathogens,infecting mainly juvenile or succulent tissues.This review attempts to assess the taxonomic position of the genus Pythium and provide details of the historical development of the study of Pythium as pathogens in Taiwan,China,causing diseases of sugarcane,trees,vegetables,fruits,specialty crops and flowering plants,as well as measures to control these diseases.Of special note is the introduction of the S-H mixture which,when used as soil amendment,effectively controls many soil-borne Pythium diseases during the early stages of plant growth.The diversity of Pythium species in Taiwan,China,is discussed in comparison with the situation in the mainland of China and suggestions are made to fully utilize Pythium spp.as agents for biological control,in industry and medicine.  相似文献   
10.
Quantitative polymerase chain reaction (qPCR) is a versatile technique for the accurate, sensitive, reliable and high‐throughput detection and quantification of target DNA in various environmental samples, and in recent years, it has greatly contributed to the advancement of knowledge in the plant pathology field. Indeed, this technique is ideal to evaluate inoculum threshold levels and to study the epidemiology, biology and ecology of phytopathogenic fungi and oomycetes, thus opening up new research opportunities to investigate host–pathogen interactions and to address tasks related to quarantine, eradication and biosecurity. Moreover, it can be a useful tool in breeding programs. The present review analyses the most relevant applications of qPCR for the detection and quantification of filamentous fungi and oomycetes within host tissues and in soil, air and water, along with brief paragraphs focusing on new application fields such as the detection and quantification of mycotoxigenic fungi and biocontrol agents. The high potentiality of qPCR for present and future applications is highlighted together with a critical analysis of major drawbacks that need to be corrected to definitively confirm it as a preferential routine quantitative detection method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号