首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   14篇
  国内免费   18篇
  2023年   7篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   8篇
  2018年   5篇
  2017年   13篇
  2016年   4篇
  2015年   10篇
  2014年   6篇
  2013年   19篇
  2012年   12篇
  2011年   11篇
  2010年   5篇
  2009年   10篇
  2008年   8篇
  2007年   12篇
  2006年   22篇
  2005年   17篇
  2004年   9篇
  2003年   9篇
  2002年   15篇
  2001年   17篇
  2000年   15篇
  1999年   4篇
  1998年   9篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
1.
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations.  相似文献   
2.
Embryos of the Wistar strain and its F(1) cross (Wistar females mated with Brown Norway males) of rats were transferred nonsurgically to 48 Wistar, 17 F(1) cross and 20 Wistar-Imamichi recipients. The two types of embryos were transferred together to each recipient to compare the viability of the embryos. Pregnancy rate was 78.8% (67 85 ). The survival rate of fetuses to term was 11.5% (20 174 ) and 25.1% (42 168 ) for the Wistar and F(1) embryos, respectively. Placental weight differed significantly (P<0.05) between embryo types and among recipient types while fetus weight differed (P<0.01) only among recipient types, with a significant interaction between recipient and embryo types (P<0.01). It was concluded that the F(1) embryos (Wistar x Brown Norway) were twice as viable as Wistar embryos under the conditions provided.  相似文献   
3.
The relation between inbreeding depression and rate of self-fertilization was studied in nine natural populations of the annual genus Amsinckia. The study included two clades (phylogenetic lineages) in which small-flowered, homostylous populations or species are believed to have evolved from large-flowered, heterostylous, self-compatible ones. In one lineage the small-flowered species is tetraploid with disomic inheritance. Rates of self-fertilization were 25% to 55% in the four large-flowered, heterostylous populations; 72% in a large-flowered but homostylous population; and greater than 99.5% in the four small-flowered, homostylous populations, which produce seed autonomously. When present, inbreeding depression occurred in the fertility but not the survival components of fitness. Using a cumulative fitness measure incorporating both survival and fertility (flower number), we found inbreeding depression to be lower in the four very highly self-fertilizing populations than in the five intermediate ones. The Spearman rank correlation between inbreeding depression and selfing rate for the nine populations was –0.50, but was not statistically significant (P = 0.12). Inbreeding depression was greater in the two tetraploid populations than in the very highly self-fertilizing, diploid ones. Phenotypic stability of progeny from self-fertilization tended to be higher in populations with lower inbreeding depression. We conclude that levels of self-fertilization and inbreeding depression in Amsinckia are determined more by other factors than by each other. Estimates of mutation rates and dominance coefficients of deleterious alleles, obtained from a companion study of the four highly self-fertilizing populations, suggest that a strong relationship may not be expected. We discuss the relationship of the present results to current theory of the coevolution of self-fertilization and inbreeding depression.  相似文献   
4.
Müller  Gabi  Ward  Paul I. 《Hydrobiologia》1997,364(2-3):183-188
An electrophoretic study of genetic variation at 11 loci was performedfor a population of European minnows, Phoxinus phoxinus (L.). Ten loci, EST-1 *, EST-2 * EST-3 *,GPD-1 *,GPD-2 *,GPI-1 *,GPI-2 *,MPI *,6PGD * and PGM * were polymorphic. IDH *wasmonomorphic. The mean number of heterozygotic loci over all 176 fish was 3.05 ± 0.104(SE). Observed mean heterozygosity was 0.28±0.058(SE) and expected mean heterozygosity was 0.27±0.054(SE). EST-2 *, EST-3 * andPGM * were not in Hardy-Weinberg equilibrium. Length,condition, parasite numbers or male breeding characters, i.e. red colorationand tubercles, were not influenced by single enzyme loci.  相似文献   
5.
Summary Two families each of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) were studied for mitochondrial heterosis and in vitro mitochondrial complementation. Inbred parents and their hybrids were compared for seedling heights and rate of oxygen uptake by the whole tissue to find out if the hybrids showed greater growth and respiratory activity at the seedling stage. Further comparisons were made by isolating mitochondria from the seedling tissues and measuring their ADP0 ratio, respiratory control ratio and cytochrome c oxidase activity for mitochondrial heterosis. Mixtures of parental mitochondria were similarly compared with parental and hybrid mitochondria for in vitro mitochondrial complementation. No evidence for mitochondrial heterosis or in vitro mitochondrial complementation was found, nor any correlation between the different mitochondrial parameters, seedling heights or rates of oxygen uptake by seedling tissue. The suggested use of mitochondrial heterosis and in vitro mitochondrial complementation for plant breeding is discussed.Data for this paper is taken from the author's dissertation written as a part of Ph.D. degree requirements at the Biology Department, Texas A & M University, College Station, Texas  相似文献   
6.
7.
农田土壤镉(Cd)污染日益严重,导致稻米Cd含量超标事件频繁出现,使粮食安全问题备受关注。因此,合理利用Cd污染农田、降低水稻籽粒Cd含量成为亟待解决的问题。籽粒Cd低积累水稻雅恢2816的地上部具有较强的Cd积累能力,研究旨在弄清其地上部Cd积累能力的遗传稳定性,进一步揭示控制该性状的遗传基础,为利用分子标记辅助选育地上部Cd富集能力强、籽粒Cd安全的水稻提供途径。以水稻雅恢2816和3个不同品种水稻分别组配获得的F1为研究对象,分析地上部Cd积累相关性状的杂种优势。进一步以优势组合C268A/雅恢2816构建F2作图群体,对地上部Cd积累相关性状进行QTL定位分析。结果表明:(1) F1地上部Cd积累相关性状杂种优势明显,遗传稳定性强。地上部Cd积累相关性状属数量性状,F2中/超亲分离现象明显。(2)在第4、6号染色体上共挖掘到1个控制水稻地上部生物量和3个控制地上部Cd积累量的QTL位点,分别为qSB-6、qSCdA-4、qSCdA-6-1和qSCdA-6-2,表型贡献率为10.6%—14.4%,且增效等位基因均来自雅恢2816。(3)地上部Cd积累量与地上部生物量、Cd含量,根、糙米的生物量、Cd积累量,根-地上部转移系数均呈极显著正相关,与地上部-籽粒转移系数呈极显著负相关,存在4个QTL集簇区Cl-4-1、Cl-6-1、Cl-6-2和Cl-6-3。(4)区间marker 04171-marker 04197控制着地上部生物量和Cd积累量,与控制糙米Cd含量的QTL不重叠。研究表明:籽粒Cd低积累水稻雅恢2816携带控制地上部Cd高积累的等位基因,可在世代间稳定遗传,QTL位点qSCdA-4、qSCdA-6-1、qSCdA-6-2是控制该性状的重要遗传基础,可为分子标记辅助选育地上部Cd高积累、籽粒Cd低积累水稻提供理论依据。  相似文献   
8.
Hybrid advantage, described as the superiority of hybrids in some traits over their parents and termed the “heterosis effect,” is widely documented in the case of reciprocal crosses of parental species (i.e., hybrids representing the F1 generation). In fish, high survival, fast growth and better health status have been widely documented in F1 hybrids. Nonetheless, the effects of interspecific hybridization on vigour, physiology and immunity-related traits in fish are largely unknown, especially concerning native systems of coexisting parental and hybrid genomes in the same habitat. The present study examined the potential physiological and immune aspects of hybrid heterosis by comparing condition status (measured especially by indexes), haematological profile, glucose concentration and selected parameters of non-specific and specific immunity between the evolutionarily divergent non-congeneric cyprinoid species Abramis brama and Rutilus rutilus and their hybrids representing the F1 generation, all of them caught in nature. Clear differences were documented for vigour-related, physiological and immune parameters between the two divergent species. Hybrids generally tended to express intermediate characters of the measured traits, likely generated by the evolutionary divergence of the hybridizing species; nonetheless, for some traits, hybrids exhibited a character that was more similar to one parental species than to the other. This was interpreted as the heterozygote advantage for F1 hybrids. It is suggested that a maternally inherited genetic background may potentially influence the expression of some branches of non-specific immunity or other aspects related to the fish health status.  相似文献   
9.
10.
分别以苗期(分蘖)、拔节期、抽穗期叶片和花粉母细胞减数分裂期、小孢子双—三核期、花粉粒时期的花药为材料,对由小麦CMS与恢复系杂交F1杂种优势形成机理作了比较蛋白质组分析。结果表明,F1杂种中有超亲、亲二型和低亲三种蛋白质表达类型出现,出现频率为亲二型>低亲>超亲。对这三种类型共17个蛋白质斑点作了质谱分析,其功能涉及DNA和蛋白质合成、能量代谢、环境防御,基因转座及光合作用等。苗期生长特性如叶鲜重、叶干重、叶片数,F1杂种倾向于双亲,没有观察到杂种优势现象,这与F1叶片中蛋白质表达多数呈亲二型相吻合。但F1中分蘖数多于双亲,因此其总鲜重、干重、总叶片数明显呈现出杂种优势,然而这种杂种优势现象与蛋白质组的变化是否有关需进一步研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号