首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   3篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2014年   2篇
  2013年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有33条查询结果,搜索用时 265 毫秒
1.
Minesoils developed from lignite surface mining in Texas are nutrient-poor and have a high N retention capacity. A major concern of landowners and soil conservationists is the response of Coastal bermudagrass to the application of low rates of ammonium-N fertilizer on these nutrient-poor minesoils. A glasshouse study, using15N-labelled ammonium sulfate fertilizer and lignite minesoil, was conducted to measure Coastal bermudagrass biomass production and fertilizer recovery during establishment in response to clipping at 2, 4, and 8 week intervals. At N rates of 0, 40, and 80 kg N ha–1,increases in N fertilization increased Coastal bermudagrass aboveground biomass 5-fold, but showed only small increases in belowground biomass. Recovery of ammonium-N fertilizer ranged from 54 to 63%. Roots contained approximately the same N content across all fertilizer rates suggesting that young, estabilishing, Coatal bermudagrass roots reserve N until their N requirement is met. As more N is obtained above that which was needed to maintain roots, then additional N taken up by the plant was transported to aboveground plant parts for growth. Frequent clipping intensified N transport to aboveground tissues. Reduced amounts of N were contained in roots after clipping due to reductions in root growth, biomass, and resource demand. Fertilization of Coastal bermudagrass at low N rates with different N fertilizer forms influenced the distribution of N in the plant and affected N recovery by different parts of the plant.  相似文献   
2.
The recovery of soil biochemical properties under grazed, grass-clover pasture, after simulated lignite mining, was studied over a 5-year period in a mesic Typic Dystrochrept soil at Waimumu, Southland, New Zealand. The restoration procedures involved four replacement treatments, after A, B, and C horizon materials had been separately removed, from all except the control, and stockpiled for 2–3 weeks. In each replacement treatment, the effects of ripping to 1.8 m depth, mole drainage, and the use of fertilizer nitrogen were also investigated.Replacement treatment markedly influenced the recovery of herbage production and soil organic C and total N contents, N mineralization, microbial biomass (as indicated by mineral-N flush) and invertase and sulphatase activities. The effectiveness of replacement treatments decreased in the order: 1. control (no stripping or replacement). 2 A, B, and C horizon materials replaced in the same order. 3. A, B, and C horizon materials each mixed with an equal amount of siltstone overburden and replaced in order, 4. A and B horizon materials mixed before replacing over C horizon material.Ripping increased herbage production, net N mineralization, and to some extent microbial biomass. Drainage had little, if any, effect.Fertilizer N also stimulated herbage production, but depressed clover growth. Over 2.5 years, it had little detectable effect on the soil properties.Increases in soil invertase and, to a lesser extent, sulphatase activity during the trial were closely related to changes in herbage production. Microbial biomass increased more rapidly than did soil organic C in the early stages of the trial.Rates of net N mineralization strongly suggest that N availability would have limited pasture growth, especially in the treatments with mixed soil materials.  相似文献   
3.
An incubation experiment was conducted to estimate redox buffer capacity of “water-rock-microbe” interaction systems in sedimentary rocks. The water chemistry, microbial growth and community structure were analyzed during the incubations. The dissolved oxygen (DO) concentrations and oxidation-reduction potential (ORP) values decreased notably in the presence of active microorganisms, whereas abiotic reactions did not lead to reducing conditions during incubation. The change in microbial community structure suggests that nitrate-reducing and sulfate-reducing bacteria played an important role in reduction of water by using lignite-derived organic matter. These results show that the microbial role is extremely important for the redox buffering capacity in sedimentary rock environments.  相似文献   
4.
Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 l-bioreactor was solubilized by the fungus.  相似文献   
5.
Knowledge of mobility of some heavy metals in coal mining areas is fundamental in order to understand their toxicity and geochemical behavior. This paper aims to map pollution and assess the risk to agricultural soils in a wider lignite opencast mining and industrial area. Geochemical data related to environmental studies show that the waste characteristics favor solubilization and mobilization of inorganic contaminants. The geochemical distribution of soil pollution is studied by the application of the Bayesian Maximum Entropy (BME) procedure, a versatile extension of geostatistics which allows merging spatial and temporal estimations in a single model. Results reveal a correlation range of contaminants concentrations up to 5000 m and indicate a potential forecasting range of up to five years. Inspection of the produced spatiotemporal maps indicates that the whole study area is contaminated by As and various heavy metals, a situation which seems to be more or less stable over time.  相似文献   
6.
Reclaimed mine soils of the Lusatian mining district are characterised by small-scale heterogeneous distribution of lignite fragments of varying size embedded in a matrix of Tertiary and Quaternary sandy material. Despite amelioration with basic fly ashes, ongoing pyrite oxidation and the subsequent acidification generate a high physical and chemical heterogeneity within the substrate, which could negatively affect root proliferation. We hypothesised that this limitation for the root system may be compensated for by intensive exploration of the porous lignite fragments by roots and/or mycorrhizal hyphae to access water and nutrients stored in these fragments. To test this hypothesis, we compared growth, shoot nutrient content, and root distribution of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings in lignite-containing and lignite-free sandy substrate. Rhizotrons used for this experiment were filled with a sandy matrix with 6–9 evenly distributed spots of lignite fragments. Treatments included different levels of water and nutrient availability. After 8 months of growth, root tip vitality as well as growth and shoot nutrient concentration of the plants was higher for treatments with lignite spots in the sandy substrate than for sandy substrate without such amendments. Compared to the non-mycorrhizal plants, the seedlings inoculated with Paxillus involutus (Batsch) Fr. had a higher root dry mass, an increased number of root tips and a higher root length. These results confirm our hypothesis that the lignite fragments are an important nutrient and water reservoir for plants in these mine soils and they indicate that mycorrhizal colonisation may allow an intensive exploration of porous lignite fragments by mycorrhizal hyphae.  相似文献   
7.
8.
《Palaeoworld》2021,30(4):737-745
This study reports the oldest fossil record of the genus Adina, A. vastanenesis n. sp., from the early Eocene of Vastan lignite mine (Cambay Shale Formation), Surat district, Gujarat. This fossil wood is characterized by diffuse porous wood, predominantly solitary tylosed vessels, simple perforations, scanty paratracheal to diffuse to sometimes diffuse in aggregate axial parenchyma, predominantly uniseriate to occasionally biseriate rays, and non septate fibres with bordered pits and shows its best resemblance with the modern species, Adina multifolia Haviland, belonging to the tribe Naucleeae (subfamily Cinchonoideae) of the family Rubiaceae. The present discovery becomes the first fossil record of the wood of Adina, which provides an insight about the Gondwanan origin either for the genus Adina or the tribe Naucleeae and its further dispersal to Southeast Asia.  相似文献   
9.
Culture-dependent and independent approaches were used to understand the microbiota thriving in tertiary coalbed, located in Jammu and Kashmir, India. We observed changes in physicochemical properties of the surface sediment (CM1) and coalbed (CM2) which detailed the influence of environmental factors on the structure and capabilities of bacterial communities. A total of 316 bacterial isolates representing 35 genera were isolated. We noted comparable difference in uncultivable bacterial communities which revealed the predominance of Proteobacteria in both the study sites. Moreover, we observed differential abundance of phyla Actinobacteria (49.6%), Firmicutes (4.2%), and Bacteroidetes (0.8%) in CM1, whereas Actinobacteria (11%), Firmicutes (37.8%), and Bacteroidetes (2.3%) in CM2. Additionally, functional imputations using PICRUSt depicted ~30% higher assemblage of major gene families in CM1 in comparison to CM2. Bacterial communities residing at CM1 were predominantly involved in methane oxidation, whereas CM2 communities found to play a vital process of conversion of coal to biogenic-methane enabling microbes to survive under constraints of high sulfur content, salt precipitation, and low nutrients and also provide clues to understand the potential of methanogenesis.  相似文献   
10.
We investigated species richness of ground dwelling beetle assemblages in two non-reclaimed lignite mines and a dump in Central Germany by means of pitfall trapping. During a period of five months, a total of 203 beetle species within 27 families represented by 4099 individuals were trapped. This included 75 species of ground beetles represented in a sample of 957 individuals from which 10 species are regionally endangered. The number of individuals, species richness, as well as the proportions of endangered species did not differ between successional stages whereas species composition of sites could be related well to a set of environmental variables. High values of beta-diversity between sites indicated that the total number of species recorded is caused by habitat diversity. From the viewpoint of nature conservation, we conclude that postmining areas can play a key role in conservation of beetle diversity in agricultural areas since they harbour threatened species whose original habitats are now rare due to human impact. An important task for future management of postmining areas is to maintain successional processes and to prevent loss of habitat diversity through afforestation. Areas with extreme soil conditions should also be preserved for long-term availability of bare soil and pioneer vegetation and associated fauna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号