首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1365篇
  免费   77篇
  国内免费   83篇
  2023年   39篇
  2022年   49篇
  2021年   65篇
  2020年   37篇
  2019年   45篇
  2018年   72篇
  2017年   28篇
  2016年   34篇
  2015年   47篇
  2014年   96篇
  2013年   129篇
  2012年   68篇
  2011年   78篇
  2010年   62篇
  2009年   48篇
  2008年   59篇
  2007年   60篇
  2006年   47篇
  2005年   58篇
  2004年   41篇
  2003年   24篇
  2002年   42篇
  2001年   18篇
  2000年   20篇
  1999年   12篇
  1998年   24篇
  1997年   22篇
  1996年   13篇
  1995年   18篇
  1994年   26篇
  1993年   16篇
  1992年   10篇
  1991年   11篇
  1990年   9篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   2篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   15篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1525条查询结果,搜索用时 31 毫秒
1.
《Cell reports》2020,30(6):1690-1701.e4
  1. Download : Download high-res image (107KB)
  2. Download : Download full-size image
  相似文献   
2.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   
3.
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
Highlights
  • •Sufficient tumor tissues are often unavailable large HLA peptidome discovery.
  • •Using patient derived xenograft (PDX) tumors can overcome this limitation.
  • •The large PDX HLA peptidomes expand significantly those of the original biopsies.
  • •The HLA peptidomes of the PDX tumors included many tumor antigens.
  相似文献   
4.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   
5.
A monospecific inhibitory antibody directed to phospholipase C (phosphoinositidase C) blocked the antiviral effect of human interferons alpha and beta when tested on human quiescent fibroblasts challenged with the vesicular stomatitis virus. This action was due to specific inhibition of polyphosphoinositide hydrolysis because (a) the F(ab)2 fragment of the antibody molecule was also inhibitory; (b) excess antibodies directed to phospholipase A2 and to a phosphatidylcholine-preferring phospholipase C did not have any inhibitory effect, and (c) the combination of 12-O-tetradecanoylphorbol-acetate and calcium ionophore A23187 had an interferon-like antiviral effect which was not influenced by the inhibitory anti-phospholipase C antibodies. To avoid an interferon-like effect due to induction of interferon by second messengers, Vero cells, which lack interferon biosynthesis, were also used. Liposomes containing inositol 1,4,5-triphosphate and 1-oleoyl-2-acetyl-rac-glycerol protected Vero cells against the infection with the vesicular stomatitis virus. These results taken together show that phosphoinositide-derived second messengers are involved in triggering the antiviral effect of interferons alpha and beta.  相似文献   
6.
This paper reports that the Kurloff cell sulphated and chondroitinase AC sensitive material previously described filtered on Sepharose CL4B columns as 2 main populations with Kav of 0.25 and 0.44. Its alkaline treatment resulted in the elution of 2 peaks with Kav of 0.52 and 0.78. Their reduction in size observed after alkaline treatment and the 6-fold increase in the (35S) sulphate incorporation after addition of 0.1 mM xyloside to the incubation medium indicate that these intracellular sulphated glycosaminoglycans exist in the form of proteoglycans. They were characterized by their resistance to degradation by pronase, papain or cathepsin D, as assessed by gel filtration chromatography on Sepharose CL6B or CL4B. After the glycosaminoglycans were digested with chondroitinase AC, thin-layer chromatography analysis indicated the presence of delta di-4S and delta di-6S in a ratio of 7:1. The presence of such protease-resistant proteochondroitin sulphate in intracytoplasmic granules of both Kurloff cells and other natural killer cell types is emphasized.  相似文献   
7.
We have studied the mechanisms of breakdown of 2'-5' oligoadenylates. We monitored the time-courses of degradation of ppp(A2'p5')nA (dimer to tetramer) and of 5'OH-(A2'p5')nA (dimer to pentamer) in unfractionated L1210 cell extract. The 5' triphosphorylated 2'-5' oligoadenylates are converted by a phosphatase activity. However, 2'-5' oligoadenylates are degraded mainly by phosphodiesterase activity which splits the 2'-5' phosphodiester bond sequentially at the 2' end to yield 5' AMP and one-unit-shorter oligomers. The nonlinear least-squares curve-fitting program CONSAM was used to fit these kinetics and to determine the degradation rate constant of each oligomer. Trimers and tetramers, whether 5' triphosphorylated or not, are degraded at the same rate, whereas 5' triphosphorylated dimer is rapidly hydrolyzed and 5'-OH dimer is the most stable oligomer. The interaction between degradation enzymes and the substrate strongly depends on the presence of a 5' phosphate group in the vicinity of the phosphodiester bond to be hydrolyzed; indeed, when this 5' phosphate group is present, as in pp/pA2'p5'A/or A2'/p5'A2'p5'A/, affinity is high and maximal velocity is low. Such a degradation pattern can control the concentration of 2'-5' oligoadenylates active on RNAse L either by limiting their synthesis (5' triphosphorylated dimer is the primer necessary for the formation of longer oligomers) and/or by converting them into inhibitory (e.g., monophosphorylated trimer) or inactive (e.g., nonphosphorylated oligomers) molecules.  相似文献   
8.
The levels of a (2'-5')An-dependent endonuclease (RNase L) were determined in extracts prepared from murine L cells and Ehrlich ascites tumor (EAT) cells by measuring specific binding of protein to a labeled derivative of (2'-5')An, (2'-5')A3[32P]pCp. RNase L levels were found to depend both on interferon (IFN) treatment and on cell growth conditions. Treatment of murine L cells and EAT cells with 100-2,000 IRU IFN beta or IFN gamma resulted in a similar 2-4-fold increase in the levels of RNase L when cells were present at low density. The levels of RNase L were also shown to increase 2-3-fold as cells approached saturation density. Serum-starved cells also displayed relatively high levels of RNase L. RNase L levels in cells maintained at high cell density did not change appreciably following treatment with IFN beta or IFN gamma. Regulation of RNase L levels by cell growth conditions as well as by IFN beta or IFN gamma treatment suggests that RNase L may play an important role in regulating the levels of cellular mRNAs as well as acting to degrade viral RNAs.  相似文献   
9.
不同型别的基因工程干扰素抗病毒活性的比较   总被引:3,自引:1,他引:2  
对大肠杆菌生产的不同型别的基因工程干扰素rIFN-α1(α1)、rIFN-αA(αA)、rIFN-β17ser(β17ser)和rIFN-γ(γ),以及自然人白细胞干扰素nIFN-αco,在不同细胞上对不同病毒的抗病毒活性做了比较研究。证明:①α1抗病毒作用的细胞谱较广,尤其在牛肾MDBK细胞和猪肾PK细胞上有很高的活性,分别为在人细胞上的29倍和7倍。β17ser和γ在异种细胞上活性极低,在鼠、猪和牛肾细胞上的活性为人细胞上的1~2%以下。②5种干扰素对麻疹、CoxB1、Sindbis、腺病毒7型和Ⅰ、Ⅱ型单纯疱疹病毒的抗病毒活性无明显差异。但不同病毒对干扰素的敏感性有明显差别,以Sindbis病毒为最敏感,7型腺病毒最不敏感。③5种干扰素对流行性出血热病毒均有明显的抗病毒作用,尤以人α1型和β干扰素作用最强,α1对出血热病毒的抗病毒活性是对滤泡性口膜炎病毒(VSV)的1/2.85,人β干扰素是对VSV的1/4.1。上述结果为人基因工程干扰素的临床应用提供了实验依据。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号