首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  2023年   1篇
  2021年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   2篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有88条查询结果,搜索用时 296 毫秒
1.
2.
3.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   
4.
Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes'' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.  相似文献   
5.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   
6.
BACKGROUND AND AIMS: The genus Melocactus comprises 36 species of globose cacti with the most derived traits in the Cereeae tribe. It is the proper study system to examine what are the most derived reproductive strategies within that tribe. This study aims to characterize the reproductive biology and to estimate the mating system parameters of two Andean melocacti, Melocactus schatzlii and M. andinus. METHODS: The reproductive attributes of the two species were described, including floral morphology, anthesis patterns, floral rewards, floral visitors and visitation patterns. Levels of self-compatibility and autonomous self-pollination were estimated by hand-pollination experiments. Mating system estimates were obtained by conducting progeny array analyses using isozymes. KEY RESULTS: The flowers of the two species present the typical hummingbird-pollination syndrome. Despite their morphological resemblance, the two species differ in flower size, pollen and ovule production and anthesis pattern. Their main pollinator agents are hummingbirds, four species in M. schatzlii and one species in M. andinus. Both cacti are self-compatible and capable of self-pollination without the aid of pollen vectors. Population-level outcrossing rate was higher for M. schatzlii (t(m)=0.9) than for M. andinus (t(m)=0.4). At the family level, outcrossing rates for most mothers of M. schatzlii were higher (t(m)>0.8) than for M. andinus (t(m)<0.5). CONCLUSIONS: Although the two cacti are capable of selfing, M. schatzlii is a predominantly outcrossing species, while M. andinus behaves as a mixed-mating cactus. Hummingbirds are the only pollinators responsible for outcrossing and gene flow events in these species. In their absence, both melocacti set seeds by selfing. Based on its low population size, restricted distribution in Venezuela, low rates of floral visits, and high levels of inbreeding, M. andinus is considered to be an endangered species deserving further study to define its conservation status.  相似文献   
7.
Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue''s grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates.  相似文献   
8.
Nathan Muchhala 《Biotropica》2008,40(3):332-337
What causes flowers to diverge? While a plant's primary pollinator should strongly influence floral phenotype, selective pressures may also be exerted by other flower visitors or competition with other plants for pollination. Species of the primarily bat‐pollinated genus Burmeistera (Campanulaceae) frequently cooccur, with up to four species in a given site, and broadly overlap in flowering phenology, typically flowering throughout the year. The genus displays extensive interspecific variation in floral morphology in the degree that the reproductive parts (anthers and stigma) are exserted outside of the corolla, and species can be roughly classified as either long or short‐exserted. I tested two hypotheses regarding the functional significance of such variation: (1) exsertion lengths correspond to pollination by bat species of different sizes; and (2) variation serves to partition pollinator's bodies spatially and thus reduces interspecific pollen transfer. I captured bats in Ecuador to evaluate the identity and location of the Burmeistera pollen they were carrying. Results show that exsertion does not correspond to specialization on different pollinators; different bat species carried pollen of both flower types just as frequently. In support of the second hypothesis, pollen from flowers of different exsertion lengths was found to occur on different regions of bats' heads. This may serve to reduce competition for pollination among coexisting Burmeistera.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号