首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.

Background and Aims

Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers.

Methods

Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods.

Key Results

Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence.

Conclusions

The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.  相似文献   

2.
紫椴是东北东部地区原始针阔混交林中优势种或共优种之一,是优质的用材树种,更是重要的蜜源植物。本文研究长白山地区紫椴从单株到种群(林分)的泌蜜量,建立单株泌蜜量回归模型,并估计林分尺度泌蜜量,分析紫椴泌蜜量与胸高断面积以及材积或蓄积之间的关系。结果表明: 紫椴单花开花时间为6~8 d,泌蜜时间为5 d,平均每朵花总泌蜜量为8.58 mg。花蜜的糖浓度在一天中有变化,中午高于早晨和傍晚,平均糖浓度为37.7%。样地紫椴的平均胸径为40 cm,单株开花量为18万个,泌蜜量为1.56 kg(或纯糖0.588 kg)。每公顷紫椴的泌蜜量为79~147 kg(或0.0686~0.1285 m3,纯糖29.78~55.42 kg)。林分泌蜜量与总断面积以及蓄积量密切相关,可以利用森林资源调查数据估算紫椴泌蜜量。  相似文献   

3.
We tested the removal effect on nectar production in four bat‐pollinated cerrado flowers. We compared the amount of nectar after 7–12 removals with the accumulated nectar in non‐manipulated flowers after 12 h. In all, but one species, removals increased volume by 1.5–4.6 times and sugar content by 1.6–4 times, which may affect flower visitation by bats, pollen flow, and reproduction. Abstract in Portuguese is available in the online version of this article.  相似文献   

4.
Nectar, the most common floral reward, is generally used to determine whether an orchid species involves deceptive pollination. Estimates of the deceptive pollination systems with nectarless flowers have ranged from one quarter to one third of the nearly 30 000 species of orchids. These estimates, however, are biased towards temperate-zone, usually terrestrial, orchids. Here we investigated nectar production and property in 34 epiphytic orchid species of the Southeast Asian genus Dendrobium. Twenty-one species were observed producing nectar. The amount and sugar concentration (in bagged flowers) of 12 species varied from 0.45 to 2.78 μL and from 8.1% to 31.1%. The nectar was sucrose-dominant, typical of bee-pollinated flowers. Reconstruction of phylogenetic relationship indicated that transition of nectar secretion occurred in the genus. Spur length was positively correlated with flower size but species with relatively long spurs tended to produce small volume of nectar. Nectar production was strikingly variable among and within individuals in some species, suggesting that a vital measurement of bagged and fresh flowers is needed. Given that the quantitative measurement of nectar or floral reward in orchid species remains scarce, an estimate of deceptive pollination systems awaits further survey in diverse genera.  相似文献   

5.
 We studied nectar characteristics during the long flowering period (late June to end of November) in two populations of Linaria vulgaris (L.) Mill. spontaneously growing in the Botanical Gardens of Siena University (Tuscany, central Italy). The two populations were close to each other but they differed in blooming period. Plants of population 1 sprouted in May and flowered from the end of June to the end of September. Population 2 sprouted at the end of August and flowered from September to the end of November. Differences in nectar production and composition were found between and within populations. Flowers of population 1 produced a very small amount of nectar (not collectable) that remained on the nectary surface. The quantity of nectar increased in late September, when each flower produced 2–3 μl of nectar that flowed into the spur. Total sugar concentration was 175.8 mg/ml in young flowers. Flowers of population 2 produced 5–8 μl of nectar with a total sugar concentration of 200.9 mg/ml in the young stage. In bagged senescent flowers nectar volume decreased in both populations and nectar sugar concentration decreased down to 11.6 mg/ml in population 2 and increased up to 289.6 mg/ml in population 1. For both populations, the decrease in nectar volume in bagged flowers may have been due to water loss by evaporation. In population 2, the decrease in sugar concentration may have been due to nectar reabsorption that was never observed in population 1. Nectar variability is discussed in relation to insect visits and seed set. Received August 14, 2002; accepted December 17, 2002 Published online: June 2, 2003  相似文献   

6.
The richness and seasonal variation of ant-plant interactions were compared in four habitats in México: lowland tropical dry forest (La Mancha, Veracruz), coastal sand dune matorral (San Benito, Yucatán), semiarid highland vegetation (Zapotitlán, Puebla), and lower montane humid forest (Xalapa, Veracruz). The effects of temperature and precipitation on the seasonal distribution of the number of ant-plant interactions differed among habitats. The general linear models fitted to the ant-plant interaction curves explained 78.8 percent of the variation for La Mancha, 80.1 percent for Zapotitlán, 18 percent for San Benito, and 29.5 percent for Xalapa. Even though rainfall is low in Zapotitlán and San Benito, minimum temperature was the most important factor accounting for the seasonal distribution and low number of interactions. At La Mancha, with milder minimum temperatures and higher water availability, temperature alone did not account for the seasonal distribution and number of interactions, whereas the effect of the precipitation × temperature interaction was highly significant. Xalapa exhibits the lowest temperatures and the highest precipitation, but the role of these factors was only marginal. We suggest that the vegetation at Xalapa, a mixture of tropical and temperate floristic elements, constrains ant-plant interactions due to a limited presence of nectaries. Also, ants are less abundant in cool and relatively aseasonal habitats. The other habitats have tropical floristic elements that are abundant and frequently have nectar-producing structures. We report considerable variation among habitats in the number and seasonal distribution of ant-plant interactions, and suggest that it is due to the effect of variation in environmental parameters, the richness of plants with nectaries in the vegetation, and habitat heterogeneity.  相似文献   

7.
8.
Bees get a head start on honey production   总被引:1,自引:0,他引:1  
Nectar concentration is assumed to remain constant during transport by honeybees between flowers and hive. We sampled crop contents of nectar foragers on Aloe greatheadii var. davyana, a major winter bee plant in South Africa. The nectar is dilute (approx. 20% w/w), but the crop contents of bees captured on flowers are significantly more concentrated. In returning foragers, the concentration increases further to 38–40%, accompanied by a volume decrease. The doubling of sugar concentration suggests that nectar is regurgitated onto the tongue and evaporated during foraging and on the return flight. Processing of the dilute nectar into honey thus begins early, aided by low ambient humidities. This has implications for honeybee thermoregulation, water balance and energetics during foraging, and for the communication of nectar quality to recruits.  相似文献   

9.
10.
We compared flower visitation patterns of two coexisting honey bees, Apis mellifera Linnaeus and Apis cerana japonica Radoszkowski, on 20 plant species, including three exotics, under natural conditions in Nara, Japan, from April to August 2012. We also measured flower color based on bee color vision (15 flower species), nectar volume (nine species) and nectar concentration (eight species). Flowers colored white, pink, red, purple and cream were classified as bee‐blue‐green, and yellow was classified as bee‐green. Apis cerana visited 14 plant species and A. mellifera visited 11. Although the two Apis species are similar in morphology, they visited different plants: in particular, A. cerana visited native plant species more often than did A. mellifera. Both A. mellifera and A. cerana visited not only nectariferous flowers but also those with no nectar. We also found different visitation patterns between A. cerana and A. mellifera: Apis cerana more often visited flowers with smaller color angle (bee‐blue‐green), lower chroma and higher brightness, and flowers secreting nectars of higher concentration and smaller volume than did A. mellifera.  相似文献   

11.
Herrera CM  Pozo MI  Bazaga P 《Molecular ecology》2012,21(11):2602-2616
In addition to genetic differences between individuals as a result of nucleotide sequence variation, epigenetic changes that occur as a result of DNA methylation may also contribute to population niche width by enhancing phenotypic plasticity, although this intriguing possibility remains essentially untested. Using the nectar‐living yeast Metschnikowia reukaufii as study subject, we examine the hypothesis that changes in genome‐wide DNA methylation patterns underlie the ability of this fugitive species to exploit a broad resource range in its heterogeneous and patchy environment. Data on floral nectar characteristics and their use by M. reukaufii in the wild were combined with laboratory experiments and methylation‐sensitive amplified polymorphism (MSAP) analyses designed to detect epigenetic responses of single genotypes to variations in sugar environment that mimicked those occurring naturally in nectar. M. reukaufii exploited a broad range of resources, occurring in nectar of 48% of species and 52% of families surveyed, and its host plants exhibited broad intra‐ and interspecific variation in sugar‐related nectar features. Under experimental conditions, sugar composition, sugar concentration and their interaction significantly influenced the mean probability of MSAP markers experiencing a transition from unmethylated to methylated state. Alterations in methylation status were not random but predictably associated with certain markers. The methylation inhibitor 5‐azacytidine (5‐AzaC) had strong inhibitory effects on M. reukaufii proliferation in sugar‐containing media, and a direct relationship existed across sugar × concentration experimental levels linking inhibitory effect of 5‐AzaC and mean per‐marker probability of genome‐wide methylation. Environmentally induced DNA methylation polymorphisms allowed genotypes to grow successfully in extreme sugar environments, and the broad population niche width of M. reukaufii was largely made possible by epigenetic changes enabling genotype plasticity in resource use.  相似文献   

12.
BACKGROUND AND AIMS: Floral nectaries and nectar features were compared between six Argentinian Ipomoea species with differences in their pollinator guilds: I. alba, I. rubriflora, I. cairica, I. hieronymi var. hieronymi, I. indica, and I. purpurea. METHODS: Pollinators were recorded in natural populations. The morpho-anatomical study was carried out through scanning electron and light microscopy. Nectar sugars were identified via gas chromatography. Nectar production and the effect of its removal on total nectar sugar amount were determined by using sets of bagged flowers. KEY RESULTS: Hymenopterans were visitors of most species, while hummingbirds visited I. rubriflora and sphingids I. alba. All the species had a vascularized discoidal nectary surrounding the ovary base with numerous open stomata with a species-specific distribution. All nectar samples contained amino acids and sugars. Most species had sucrose-dominant nectars. Flowers lasted a few hours. Mean nectar sugar concentration throughout the lifetime of the flower ranged from 34.28 to 39.42 %, except for I. cairica (49.25 %) and I. rubriflora (25.18 %). Ipomoea alba had the highest nectar volume secreted per flower (50.12 microL), while in the other taxa it ranged from 2.42 to 12.00 microL. Nectar secretion began as soon as the flowers opened and lasted for a few hours (in I. purpurea, I. rubriflora) or it was continuous during the lifetime of the flower (in the remaining species). There was an increase of total sugar production after removals in I. cairica, I. indica and I. purpurea, whereas in I. alba and I. rubriflora removals had no effect, and in I. hieronymi there was a decrease in total sugar production. CONCLUSIONS: The chemical composition, production dynamics and removal effects of nectar could not be related to the pollinator guild of these species. Flower length was correlated with nectary size and total volume of nectar secreted, suggesting that structural constraints may play a major role in the determination of nectar traits of these species.  相似文献   

13.
Sarracenia purpurea L. (northern pitcher plant) is an insectivorous plant with extrafloral nectar that attracts insects to a water-filled pitfall trap. We identified and quantified the amino acids in extrafloral nectar produced by pitchers of S. purpurea. Nectar samples were collected from 32 pitchers using a wick-sampling technique. Samples were analyzed for amino acids with reverse-phase high-performance liquid chromatography with phenylisothiocyanate derivatization. Detectable amounts of amino acids were found in each of the 32 nectar samples tested. Mean number of amino acids in a nectar sample was 9 (SD = 2.2). No amino acid was detected in all 32 samples. Mean amount of amino acids in a nectar sample (i.e., amount per wick) was 351.4 ng (SD = 113.2). Nine amino acids occurred in 20 of the 32 samples (aspartic acid, cysteine, glutamic acid, glycine, histidine, hydroxyproline, methionine, serine, valine) averaging 263.4 ng (SD = 94.9), and accounting for ~75% of the total amino acid content. Nectar production may constitute a significant cost of carnivory since the nectar contains amino acids. However, some insects prefer nectar with amino acids and presence of amino acids may increase visitation and capture of insect prey.  相似文献   

14.
15.
Many flowering plants obtain the services of pollinators by using their floral traits as signals to advertise the rewards they offer to visitors—such as nectar, pollen and other food resources. Some plants use colorful pigments to draw pollinators’ attention to their nectar, instead of relying on the appeal of nectar taste. Although this rare floral trait of colored nectar was first recorded by the Greek poet Homer in the Odyssey, it has only recently received the attention of modern science. This mini-review focuses on recent findings about some of the species that use colored nectar; topics include its function as an honest signal for pollinators, as well as the pigments responsible for the nectar coloration. Such research of the ecology and physiology of colored nectar expands our understanding of the role and evolution of pollinator signaling in plants.  相似文献   

16.
Flower morphology, nectary structure, nectar features (chemical composition, secretion pattern, standing crop, removal effects) and flower visitors are analysed in an Argentinian population of Combretum fruticosum. The variability of these data was examined throughout the flower lifetime. Nectar is hexose dominant. Its chemical composition and concentration are constant for all flowering stageS. Nectar volume varies as a function of flower age due to a combination of nectar secretion, cessation and resorption periods. The overall sugar production is decreased by nectar removal. The plant is self-incompatible and xenogamouS. Only 16.2% of the flowers set seedS. Inflorescences with green flowers were exclusively visited by two hummingbird and three perching bird species which transfer the pollen. A clear link was observed among nectar production pattern, standing crop of nectar, and visitors' behaviour.  相似文献   

17.
Abstract: The morphological and cytological characteristics of nectaries of Helleborus foetidus and H. bocconei during the secretory period are reported. The nectaries are derived from modified petals and secrete nectar continuously for about 20 days; they consist of a single layered epidermis, nectar-producing parenchyma and photosynthesizing parenchyma. Nectar secretion is holocrine and the nectar is released by rupture of the wall and cuticle of each epidermal cell. The nectaries of the two species differ in number and external morphology. In H. foetidus, secretion begins before anthesis and secretion rate decreases with nectary age. In H. bocconei it begins on the day of anthesis and proceeds at a constant rate. The nectar has a high sugar content, mainly sucrose, and also contains lipids and proteins.  相似文献   

18.
In dichogamous plants, nectar characteristics (i.e. nectar amount and its composition) can differ between sexual phases. In the present study, we investigated the structural organization of the floral nectary, nectar production and carbohydrate composition in the protandrous Chamaenerion angustifolium (L.) Scop. (Onagraceae). The receptacular nectary consisted of an epidermis with numerous nectarostomata, several layers of photosynthetic secretory parenchyma, and subsecretory parenchyma. Nectariferous tissue was not directly vascularized and starch grains were rarely observed in the secretory cells, occurring exclusively in the guard cells of modified stomata. The nectar was released via nectarostomata. The floral nectar was hexose rich (32.8/39.1/28.1% glucose/fructose/sucrose) and the total concentration was constant throughout the anthesis (47% on average). However, contrasting patterns in nectar amount and carbohydrate composition between the floral sexual phases were observed. On average, female‐phased flowers produced 1.4‐fold more nectar than male‐phased flowers, and although the nectar was sucrose rich during the male phase, it was hexose rich during the female phase, suggesting sucrose hydrolysis.  相似文献   

19.
Abstract.
  • 1 The role that amino acids in extrafloral nectars play in attracting ants to plants was investigated. Workers from laboratory colonies of Solenopsis invicta Buren and S.geminafa (F). (Formicidae) fed from artificial nectaries containing mimics of the extrafloral nectar of Passiflora menispermifoh and P.caerulea; P.menispermifoh nectar contains higher levels of amino acids (1347.3 pdml) than does the nectar of P.currulea (125.2 μm /ml).
  • 2 When sugar-only and sugar—amino acid nectar mimics were presented simultaneously, more S.invicta workers were counted at sugar—amino acid nectar mimics than at sugar-only nectars. S.geminatu did not discriminate between the two nectars.
  • 3 When the two Pamiflora L. nectar mimics were presented simultaneously, S.invicta and S.geminata workers were more abundant at the nectaries containing high levels of amino acids (P.menispermifolia HBK mimic) than at the nectaries containing low levels of amino acids (P.cuerulea L. mimic).
  • 4 The behaviour shown by S.invicta and S.gerninata suggests that plants with high levels of amino acids in their extrafloral nectars attract more ant protectors and might suffer less herbivory than plants producing nectars with low levels of amino acids. If so, ants may favour, over evolutionary time, plants that produce nectars with high levels of amino acids.
  • 5 Day-to-day variability in ant behaviour was considerable even among laboratory colonies maintained on the same diet in similar environmental conditions. This variability will reduce the selective impact that ants have on plants and may help to explain why most ant-plant interactions are facultative.
  相似文献   

20.
传粉生物学中几种花蜜采集和糖浓度测定方法的比较   总被引:6,自引:0,他引:6  
花蜜的研究是花生物学中的一个重要内容,探寻实用的方法将方便野外操作。我们分别还用毛细管、注射器、滤纸条和离心法采集了5种花的花蜜,以比较各种方法的优劣,并用3种旋光测糖仪测量了慈姑Sagittaria trifolia L,的雌雄花的花蜜糖含量。目的是为寻找一种适合小型花的花蜜采集测量方法。结果表明,几种方法的适用性受花的大小、形状、蜜的分泌量及蜜腺位置的影响非常大,不同的花要采用不同的方法。对于一般的野外工作建议用毛细管采集后使用便携式旋光测糖仪测其糖含量。特别小的花和蜜量微小的花可以采用离心法收集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号