首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   7篇
  国内免费   7篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Hepcidin is a key iron-regulatory hormone, the production of which is controlled by iron stores, inflammation, hypoxia and erythropoiesis. The regulation of iron by hepcidin is of clinical importance in thalassemia patients in which anemia occurs along with iron overload. The present study aimed to evaluate the correlation between serum hepcidin and ferritin levels in thalassemia patients. This cross-sectional study investigated 64 patients with thalassemia; 16 β-thalassemia major (BTM), 31 β-thalassemia/hemoglobin (Hb) E (BE), and 17 Hb H + AE Bart’s disease (Hb H + AE Bart’s). The levels of serum hepcidin and ferritin, and Hb of the three groups were measured. The median values of serum ferritin and Hb were significantly different among the three groups, whereas serum hepcidin values were not observed to be significantly different. The correlation of the serum hepcidin and ferritin levels was not statistically significant in any of the three groups of thalassemia patients with BTM, BE, or Hb H + AE Bart’s (r = −0.141, 0.065 and −0.016, respectively). In conclusion, no statistically significant correlations were observed between serum hepcidin with any variables including serum ferritin, Hb, age, labile plasma iron (LPI), and number of blood transfusion units among the three groups of thalassemia patients. Likely, the regulation of hepcidin in thalassemia patients is affected more by erythropoietic activity than iron storage.  相似文献   
2.
Screening was carried out to obtain microorganisms which produced the enzyme to reduce the disulfide bond, from our type cultures of yeast. Among many strains of yeast showing activity to reduce the disulfide bond, Candida claussenii, Candida brumptii and Candida rugosa were selected to have the highest activity. The enzyme activity was detected in the cell free extracts, but not in culture broth.

The highest enzyme formation occured during the exponential growth phase, and rapid decrease of activity was observed in the stationary phase. Pantothenate and boron ion contributed to enzyme formation, and biotin and zinc ion to growth. The maximum enzyme activity was obtained in the following synthetic medium: 10% sucrose, 0.3% (NH4)2SO4, 0.5% KH2PO4, 0.15% MgCl2·6HO2 0.05% CaCl2, 0.015% MnCl2, 0.001% pantothenate, 0.0001% biotin, 0.0001% H3BO3, 0.00004% FeCl3·6H2O and 0.00008% ZnCl2. In addition, 30°C of the cultural temperature and vigorous aeration showed good results for enzyme formation.  相似文献   
3.
Intermittent hypobaric hypoxia can produce a protective effect on both the nervous system and non-nervous system tissues. Intermittent hypobaric hypoxia preconditioning has been shown to protect rats from cardiac ischemia-reperfusion injury by decreasing cardiac iron levels and reactive oxygen species (ROS) production, thereby decreasing oxidative stress to achieve protection. However, the specific mechanism underlying the protective effect of hypobaric hypoxia is unclear. To shed light on this phenomenon, we subjected Sprague-Dawley rats to hypobaric hypoxic preconditioning (8 hours/day). The treatment was continued for 4 weeks. We then measured the iron content in the heart, liver, spleen, and kidney. The iron levels in all of the assessed tissues decreased significantly after hypobaric hypoxia treatment, corroborating previous results that hypobaric hypoxia may produce its protective effect by decreasing ROS production by limiting the levels of catalytic iron in the tissue. We next assessed the expression levels of several proteins involved in iron metabolism (transferrin receptor, L-ferritin, and ferroportin1 [FPN1]). The increased transferrin receptor and decreased L-ferritin levels after hypobaric hypoxia were indicative of a low-iron phenotype, while FPN1 levels remained unchanged. We also examined hepcidin, transmembrane serine proteases 6 (TMPRSS6), erythroferrone (ERFE), and erythropoietin (EPO) levels, all of which play a role in the regulation of systemic iron metabolism. The expression of hepcidin decreased significantly after hypobaric hypoxia treatment, whereas the expression of TMPRSS6 and ERFE and EPO increased sharply. Finally, we measured serum iron and total iron binding capacity in the serum, as well as red blood cell count, mean corpuscular volume, hematocrit, red blood cell distribution width SD, and red blood cell distribution width CV. As expected, all of these values increased after the hypobaric hypoxia treatment. Taken together, our results show that hypobaric hypoxia can stimulate erythropoiesis, which systemically draws iron away from nonhematopoietic tissue through decreased hepcidin levels.  相似文献   
4.
The liver hormone hepcidin is the central regulator of systemic iron metabolism. Its increased expression in inflammatory states leads to hypoferremia and anemia. Elucidation of the mechanisms that up-regulate hepcidin during inflammation is essential for developing rational therapies for this anemia. Using mouse models of inflammatory bowel disease, we have shown previously that colitis-associated hepcidin induction is influenced by intestinal microbiota composition. Here we investigate how two commensal bacteria, Bifidobacterium longum and Bacteroides fragilis, representative members of the gut microbiota, affect hepcidin expression. We found that supernatants of a human macrophage cell line infected with either of the bacteria up-regulated hepcidin when added to a human hepatocyte cell line. This activity was abrogated by neutralization of IL-1β. Moreover, purified IL-1β increased hepcidin expression when added to the hepatocyte line or primary human hepatocytes and when injected into mice. IL-1β activated the bone morphogenetic protein (BMP) signaling pathway in hepatocytes and in mouse liver, as indicated by increased phosphorylation of small mothers against decapentaplegic proteins. Activation of BMP signaling correlated with IL-1β-induced expression of BMP2 in human hepatocytes and activin B in mouse liver. Treatment of hepatocytes with two different chemical inhibitors of BMP signaling or with a neutralizing antibody to BMP2 prevented IL-1β-induced up-regulation of hepcidin. Our results clarify how commensal bacteria affect hepcidin expression and reveal a novel connection between IL-1β and activation of BMP signaling. They also suggest that there may be differences between mice and humans with respect to the mechanism by which IL-1β up-regulates hepcidin.  相似文献   
5.
Portugal S  Drakesmith H  Mota MM 《EMBO reports》2011,12(12):1233-1242
After the bite of a malaria-infected mosquito, the Plasmodium sporozoite infects liver cells and produces thousands of merozoites, which then infect red blood cells, causing malaria. In malaria-endemic areas, several hundred infected mosquitoes can bite an individual each year, increasing the risk of superinfection. However, in infants that are yet to acquire immunity, superinfections are infrequent. We have recently shown that blood-stage parasitaemia, above a minimum threshold, impairs the growth of a subsequent sporozoite infection of liver cells. Blood-stage parasites stimulate the production of the host iron-regulatory factor hepcidin, which redistributes iron away from hepatocytes, reducing the development of the iron-dependent liver stage. This could explain why Plasmodium superinfection is not often found in young nonimmune children. Here, we discuss the impact that such protection from superinfection might have in epidemiological settings or in programmes for controlling malaria, as well as how the induction of hepcidin and redistribution of iron might influence anaemia and the outcome of non-Plasmodium co-infections.  相似文献   
6.
MeCN, acetonitrile; ECL, enhanced chemiluminescence; EDT, 1,2‐ethanedithiole; HEPC12‐A, rabbit anti‐human hepcidin IgG, affinity purified; HEPC13‐A, rabbit anti‐mouse/human hepcidin IgG, affinity purified; HEPC61‐P, human hepcidin‐25 control/blocking synthetic peptide; HRP, horseradish peroxidase; IL‐6, interleukin‐6; KLH, keyhole limpet hemocyanin; LEAP, liver‐expressed antimicrobial peptide; NEM, N‐ethylmaleimide; NMP, N‐methyl‐pirrolidone; PBS, phosphate buffered saline; PVDF, polyvinylidene difluoride; SELDI‐TOF‐MS, surface‐enhanced laser desorption ionization–time‐of‐flight mass spectrometry; TMB, tetramethylbenzidin; TNF‐α, tumor necrosis factor‐α Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
7.
Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy.  相似文献   
8.
铁调素(hepcidin)是由肝脏分泌的一种肽类激素,它通过改变细胞膜上ferroportin的水平而调节全身铁代谢。Ferroportin是唯一已知的哺乳动物中的铁外排通道,它表达在小肠细胞的基底外侧膜和巨噬细胞的质膜上。铁调素结合ferroportin导致其在溶酶体内降解,从而减少铁从饮食的吸收和巨噬细胞铁的释放。Hemojuvelin(HJV)是一种glycosylphosphatidylinositol(GPI)相连的膜蛋白,它作为骨形态发生蛋白(BMP)的共受体可以激活肝细胞Smad信号通路和铁调素表达。除了表达在细胞膜上,hemojuvelin还可以被切割并分泌到胞外,形成可溶性蛋白。由furin切割产生的可溶性HJV可以选择性地结合到BMP配体,抑制内源性BMP诱导的铁调素表达。TMPRSS6也被认为可以切割细胞膜上HJV并影响铁调素的表达。最近的研究表明,HJV还可能参与脂肪组织对铁代谢的调控。综述了近期对细胞膜HJV和可溶性HJV如何调节铁调素的表达与铁代谢的研究结果,并对这一研究领域需要填补的空白进行了初步探讨。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号