首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8069篇
  免费   1036篇
  国内免费   609篇
  2024年   6篇
  2023年   136篇
  2022年   143篇
  2021年   217篇
  2020年   347篇
  2019年   394篇
  2018年   427篇
  2017年   348篇
  2016年   395篇
  2015年   356篇
  2014年   382篇
  2013年   621篇
  2012年   253篇
  2011年   370篇
  2010年   307篇
  2009年   390篇
  2008年   403篇
  2007年   390篇
  2006年   384篇
  2005年   355篇
  2004年   280篇
  2003年   273篇
  2002年   271篇
  2001年   188篇
  2000年   171篇
  1999年   152篇
  1998年   190篇
  1997年   159篇
  1996年   111篇
  1995年   146篇
  1994年   145篇
  1993年   94篇
  1992年   110篇
  1991年   94篇
  1990年   73篇
  1989年   98篇
  1988年   63篇
  1987年   56篇
  1986年   57篇
  1985年   65篇
  1984年   59篇
  1983年   32篇
  1982年   46篇
  1981年   30篇
  1980年   40篇
  1979年   29篇
  1978年   9篇
  1977年   19篇
  1976年   13篇
  1975年   6篇
排序方式: 共有9714条查询结果,搜索用时 265 毫秒
1.
Energy storage in arthropods has important implications for survival and reproduction. The lipid content of 276 species of adult arthropods with wet mass in the range 0.2–6.13 g is determined to assess how lipid mass scales with body mass. The relative contribution of lipids to total body mass is investigated with respect to phylogeny, ontogeny and sex. The lipid content of adult insects, arachnids, and arthropods in general shows an isometric scaling relationship with respect to body mass (M) (Marthropod lipid = ?1.09 ×Mdry1.01 and Marthropod lipid = ?1.00 ×Mlean0.98). However, lipid allocation varies between arthropod taxa, as well as with sex and developmental stage within arthropod taxa. Female insects and arachnids generally have higher lipid contents than males, and larval holometabolous insects and juvenile arachnids have higher lipid contents than adults.  相似文献   
2.
  1. Birds colliding with turbine rotor blades is a well‐known negative consequence of wind‐power plants. However, there has been far less attention to the risk of birds colliding with the turbine towers, and how to mitigate this risk.
  2. Based on data from the Smøla wind‐power plant in Central Norway, it seems highly likely that willow ptarmigan (the only gallinaceous species found on the island) is prone to collide with turbine towers. By employing a BACI‐approach, we tested if painting the lower parts of turbine towers black would reduce the collision risk.
  3. Overall, there was a 48% reduction in the number of recorded ptarmigan carcasses per search at painted turbines relative to neighboring control (unpainted) ones, with significant variation both within and between years.
  4. Using contrast painting to the turbine towers resulted in significantly reduced number of ptarmigan carcasses found, emphasizing the effectiveness of such a relatively simple mitigation measure.
  相似文献   
3.
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance.  相似文献   
4.
Rechargeable graphite dual‐ion batteries (GDIBs) have attracted the attention of electrochemists and material scientists in recent years due to their low cost and high‐performance metrics, such as high power density (≈3–175 kW kg?1), energy efficiency (≈80–90%), long cycling life, and high energy density (up to 200 Wh kg?1), suited for grid‐level stationary storage of electricity. The key feature of GDIBs is the exploitation of the reversible oxidation of the graphite network with concomitant and highly efficient intercalation/deintercalation of bulky anionic species between graphene layers. In this review, historical and current research aspects of GDIBs are discussed, along with key challenges in their development and practical deployment. Specific emphasis is given to the operational mechanism of GDIBs and to unbiased and correct reporting of theoretical cell‐level energy densities.  相似文献   
5.
6.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   
7.
8.
The relationship between overnight postabsorptive (fasting) respiratory exchange ratio (RER) and plasma FFA concentrations was addressed using data from three separate protocols, each of which involved careful control of the antecedent diet. Protocol 1 examined the relationship between fasting RER and the previous daytime RER. In Protocol 2 fasting, RER and plasma palmitate concentrations were measured in 29 women and 31 men (body mass index <30 kg·m−2). Protocol 3 analyzed data from Nielsen et al. (Nielsen, S., Z. K. Guo, J. B. Albu, S. Klein, P. C. O''Brien, M. D. Jensen. 2003. Energy expenditure, sex and endogenous fuel availability in humans. J. Clin. Invest. 111: 981-988.) to understand how fasting RER and palmitate concentrations relate within individuals during four consecutive measurements. The results were as follows: 1) Fasting RER was correlated (r = 0.74, P < 0.001) with the previous day''s average RER, and less so with RER variability. 2) Fasting RER was correlated (r = −0.39, P = 0.007) with fasting plasma palmitate concentrations. 3) The pattern of the RER/palmitate relationship was similar within individuals and between individuals; a negative slope was observed significantly more often than a positive slope (χ2 test; P < 0.001). Our findings suggest that, despite a fixed food quotient, the slight departures from energy equilibrium in a controlled General Clinical Research Center environment can effect plasma FFA concentrations. We suggest that including indirect calorimetry as part of FFA metabolism studies may aid in data interpretation.  相似文献   
9.
10.
Seasonal reproduction is common among mammals at all latitudes, even in the deep tropics. This paper (i) discusses the neuroendocrine pathways via which foraging conditions and predictive cues such as photoperiod enforce seasonality, (ii) considers the kinds of seasonal challenges mammals actually face in natural habitats, and (iii) uses the information thus generated to suggest how seasonal reproduction might be influenced by global climate change. Food availability and ambient temperature determine energy balance, and variation in energy balance is the ultimate cause of seasonal breeding in all mammals and the proximate cause in many. Photoperiodic cueing is common among long-lived mammals from the highest latitudes down to the mid-tropics. It is much less common in shorter lived mammals at all latitudes. An unknown predictive cue triggers reproduction in some desert and dry grassland species when it rains. The available information suggests that as our climate changes the small rodents of the world may adapt rather easily but the longer lived mammals whose reproduction is regulated by photoperiod may not do so well. A major gap in our knowledge concerns the tropics; that is where most species live and where we have the least understanding of how reproduction is regulated by environmental factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号