首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2016年   1篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   2篇
排序方式: 共有48条查询结果,搜索用时 62 毫秒
1.
Immunotoxins consist of monoclonal or polyclonal antibodies conjugated to bacterial or plant toxins. The toxins used are typically of the A-B type in which a toxic A chain is coupled to a B chain responsible for cell binding and facilitation of A chain entry into the cytosol. Two broad strategies have been followed: coupling intact toxins, or A chains alone, to antibodies. This review examines current progress inin vitro andin vivo research, including recent clinical studies, concentrating principally on ricin or ricin A chain conjugates. The future role of conjugates using membrane-acting toxins, immunolysins, is also discussed.  相似文献   
2.
Enterolobin, a 55-kDa cytolytic, inflammatory, and insecticidal protein isolated from seeds of the Brazilian treeEnterolobium contortisiliquum (Leguminosae-Mimosoideae) has been further purified and partially sequenced by using both manual and automated methods. A computational search of enterolobin partial amino acid sequence against the PIR database revealed possible sequence similarities with aerolysins, cytolytic proteins fromAeromonas species. An alignment of enterolobin partial sequence to the amino acid sequences ofA. hydrophila andA. sobria aerolysins showed several similar regions with many residue identites. The seed protein enterolobin and the bacterial aerolysins may be homologous proteins despite the distant phylogenetic relationship.  相似文献   
3.
Gastrointestinal (GI) anthrax, caused by the bacterial infection of Bacillus anthracis, posts a significant bioterrorism threat by its relatively high mortality rate in humans. Different from inhalational anthrax by the route of infection, accumulating evidence indicates the bypass of vegetative bacteria across GI epithelium is required to initiate GI anthrax. Previously, we reported that purified anthrolysin O (ALO), instead of tripartite anthrax edema and lethal toxins, is capable of disrupting gut epithelial tight junctions and barrier function in cultured cells. Here, we show that ALO can disrupt intestinal tissue barrier function in an ex vivo mouse model. To explore the effects of ALO in a cell culture model of B. anthracis infection, we showed that anthrax bacteria can effectively reduce the monolayer integrity of human Caco-2 brush-border expressor (C2BBE) cells based on the reduced transepithelial resistance and the increased leakage of fluorescent dye. This disruption is likely caused by tight junction dysfunction observed by the reorganization of the tight junction protein occludin. Consequently, we observe significant passage of vegetative anthrax bacteria across C2BBE cells. This barrier disruption and bacterial crossover requires ALO since ALO-deficient B. anthracis strains fail to induce monolayer dysfunction and allow the passage of anthrax bacteria. Together these findings point to a pivotal role for ALO within the establishment of GI anthrax infection and the initial bypass of the epithelial barrier.  相似文献   
4.
Pathogenic Vibrio cholerae secrete V. cholerae cytolysin (VCC), an 80 kDa pro-toxin that assembles into an oligomeric pore on target cell membranes following proteolytic cleavage and interaction with cell surface receptors. To gain insight into the activation and targeting activities of VCC, we solved the crystal structure of the pro-toxin at 2.3A by X-ray diffraction. The core cytolytic domain of VCC shares a fold similar to the staphylococcal pore-forming toxins, but in VCC an amino-terminal pro-domain and two carboxy-terminal lectin domains decorate the cytolytic domain. The pro-domain masks a protomer surface that likely participates in inter-protomer interactions in the cytolytic oligomer, thereby explaining why proteolytic cleavage and movement of the pro-domain is necessary for toxin activation. A single beta-octyl glucoside molecule outlines a possible receptor binding site on one lectin domain, and removal of this domain leads to a tenfold decrease in lytic activity toward rabbit erythrocytes. VCC activated by proteolytic cleavage assembles into an oligomeric species upon addition of soybean asolectin/cholesterol liposomes and this oligomer was purified in detergent micelles. Analytical ultracentrifugation and crystallographic analysis indicate that the resulting VCC oligomer is a heptamer. Taken together, these studies define the architecture of a pore forming toxin and associated lectin domains, confirm the stoichiometry of the assembled oligomer as heptameric, and suggest a common mechanism of assembly for staphylococcal and Vibrio cytolytic toxins.  相似文献   
5.
Cholesterol-dependent cytolysins (CDCs) are produced by a large number of pathogenic Gram-positive bacteria. Most of these single-chain proteins are secreted in the extracellular medium. Among the species producing CDCs, only two species belonging to the genus Listeria (Listeria monocytogenes and Listeria ivanovii) are able to multiply intracellularly and release their toxins in the phagosomal compartment of the infected host cell. This review provides an updated overview on the importance of listeriolysin O (LLO) in the pathogenicity of L. monocytogenes, focusing mainly on two aspects: (1) the structure-function relationship of LLO and (2) its role in intra- and extracellular signalling. We first examine the specific sequence determinants, or protein domains, that make this cytolysin so well adapted to the intracellular lifestyle of L. monocytogenes. The roles that LLO has in cellular signalling events in the context of relations to pathogenesis are also discussed.  相似文献   
6.
Ostreolysin, a cytolytic protein from the edible oyster mushroom (Pleurotus ostreatus), recognizes and binds specifically to membrane domains enriched in cholesterol and sphingomyelin (or saturated phosphatidylcholine). These events, leading to permeabilization of the membrane, suggest that a cholesterol-rich liquid-ordered membrane phase, which is characteristic of lipid rafts, could be its possible binding site. In this work, we present effects of ostreolysin on membranes containing various steroids. Binding and membrane permeabilizing activity of ostreolysin was studied using lipid mono- and bilayers composed of sphingomyelin combined, in a 1/1 molar ratio, with natural and synthetic steroids (cholesterol, ergosterol, β-sitosterol, stigmasterol, lanosterol, 7-dehydrocholesterol, cholesteryl acetate, and 5-cholesten-3-one). Binding to membranes and lytic activity of the protein are both shown to be dependent on the intact sterol 3β-OH group, and are decreased by introducing additional double bonds and methylation of the steroid skeleton or C17-isooctyl chain. The activity of ostreolysin mainly correlates with the ability of the steroids to promote formation of liquid-ordered membrane domains, and is the highest with cholesterol-containing membranes. Furthermore, increasing the cholesterol concentration enhanced ostreolysin binding in a highly cooperative manner, suggesting that the membrane lateral distribution and accessibility of the sterols are crucial for the activity of this new member of cholesterol-dependent cytolysins.  相似文献   
7.
利用生物信息学预测rVvhA的141-335位氨基酸片段有膜成孔模序。基因克隆表达得到95%以上纯度的rMpf,电子透射电镜观察其能够抑制Hela细胞生长且呈剂量依赖性,即0.8,1.6,2.4μg/mL rMpf作用8 h后,细胞和线粒体形态均发生凋亡和坏死改变,细胞内活性氧产生明显,线粒体膜电位下降,mPTP荧光检测膜通道孔活性增强。以上结果表明,rMpf具有诱导Hela细胞损伤的生物学活性,可通过改变膜通透性引起细胞凋亡。  相似文献   
8.
Cytotoxic lymphocytes (CLs) are responsible for the clearance of virally infected or neoplastic cells. CLs possess specialised lysosome-related organelles called granules which contain the granzyme family of serine proteases and perforin. Granzymes may induce apoptosis in the target cell when delivered by the pore forming protein, perforin. Here we follow the perforin-granzyme pathway from synthesis and storage in the granule, to exocytosis and finally delivery into the target cell. This review focuses on the controversial subject of perforin-mediated translocation of granzymes into the target cell cytoplasm. It remains unclear whether this occurs at the cell surface with granzymes moving through a perforin pore in the plasma membrane, or if it involves internalisation of perforin and granzymes and subsequent release from an endocytic compartment. The latter mechanism would represent an example of cross talk between the endo-lysosomal pathways of individual cells. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   
9.
Most Serratia marcescens strains produce a new type of cytolysin (hemolysin) which is also found in other Serratia species. The hemolytic polypeptide ShlA (M(r) 162 101) is secreted across the outer membrane through the help of the ShlB protein which also involves conversion of an inactive precursor in an hemolytically active form. Both proteins are synthesized with signal sequences which are released during export across the cytoplasmic membrane. Mutants expressing inactive ShlB derivatives are impaired in activation and secretion suggesting a tight coupling between both processes. The region of ShlA for activation and secretion is confined to the N-terminal 16% of the polypeptide which contains the sequence NPNG which is also found in the Proteus hemolysin, the Bordetella pertussis filamentous hemagglutinin and two highly expressed outer membrane proteins of Haemophilus influenzae. Substitution of the first asparagine (N) residue by isoleucine converts the Serratia hemolysin into an inactive secretion incompetent form. It is concluded that this region is recognized by ShlB for activation and secretion of ShlA. The Serratia hemolysin forms defined pores in erythrocyte membranes.  相似文献   
10.
The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号