首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that Serratia marcescens exports a hemolysin to the cell surface and secretes it to the extracellular space. Escherichia coli containing the cloned hemolysin genes shlA and shlB exported and secreted the S. marcescens hemolysin. A nonhemolytic secretion-incompetent precursor of the hemolysin, designated ShlA*, was synthesized in a shlB deletion mutant and accumulated in the periplasmic space of E. coli. Immunogold-labeled ultrathin sections revealed ShlA* bound to the outer face of the cytoplasmic membrane and to the inner face of the outer membrane. A number of mutants carrying 3' deletions in the shlA gene secreted truncated polypeptides, the smallest of which contained only 261 of the 1578 amino acids of the mature ShlA hemolysin, showing that the information for export to the cell surface of E. coli and secretion into the culture medium is located in the NH2-terminal segment of the hemolysin. We propose a secretion pathway in which ShlA and ShlB are exported across the cytoplasmic membrane via a signal sequence-dependent mechanism. ShlB is integrated into the outer membrane. ShlA is translocated across the outer membrane with the help of ShlB. During the latter export process or at the cell surface, ShlA acquires the hemolytically active conformation and is released to the extracellular space. The hemolysin secretion pathway appears to be different from any other secretion system hitherto reported and involves only a single specific export protein.  相似文献   

2.
R Ondraczek  S Hobbie    V Braun 《Journal of bacteriology》1992,174(15):5086-5094
The hemolytic activity of Serratia marcescens is determined by two polypeptides, termed ShlA and ShlB. ShlA is synthesized as an inactive precursor (ShlA*) and secreted with the help of ShlB, which is located in the outer membrane. In this study, it is shown that a cell lysate containing ShlB as well as partially purified ShlB converted ShlA* to the active ShlA hemolysin. ShlA remained active after removal of ShlB by column chromatography. In contrast to the stable modification of ShlA* by ShlB, a reversible activation was achieved by adding to ShlA* an N-terminal fragment of ShlA (ShlA16), consisting of 269 amino acid residues of ShlA and 18 residues of the vector. The nonhemolytic ShlA16 complemented ShlA* only when it was synthesized in an ShlB-producing cell. A deletion derivative of ShlA*, lacking residues 4 to 117, was complemented by ShlA16 but not activated by ShlB. Activation of ShlA* by ShlB at 4 degrees C proceeded at a much slower rate than complementation by ShlA16. It is concluded that ShlA* is modified by ShlB. ShlA16 modified by ShlB complements the missing modification of ShlA* in trans. Modification by ShlB occurs in the N-terminal part of ShlA*, which is also the reaction in vivo which results in active ShlA hemolysin in the culture supernatant. The HpmA hemolysin of Proteus mirabilis, which is very similar to ShlA, was also activated in vitro by ShlB and complemented by ShlA16.  相似文献   

3.
The ShlB protein in the outer membrane of Serratia marcescens is the only protein known to be involved in secretion of the ShlA protein across the outer membrane. At the same time, ShlB converts ShlA into a haemolytic and a cytolytic toxin. Surface-exposed residues of ShlB were determined by reaction of an M2 monoclonal antibody with the M2 epitope DYKDDDDK inserted at 25 sites along the entire ShlB polypeptide. The antibody bound to the M2 epitope at 17 sites in intact cells, which indicated surface exposure of the epitope, and to 23 sites in isolated outer membranes. Two insertion mutants contained no ShlB(M2) protein in the outer membrane. The ShlB derivatives activated and/or secreted ShlA. To gain insights into the secretion mechanism, we studied whether highly purified ShlB and ShlB deletion derivatives formed pores in artificial lipid bilayer membranes. Wild-type ShlB formed channels with very low single channel conductance that rarely assumed an open channel configuration. In contrast, open channels with a considerably higher single channel conductance were observed with the deletion mutants ShlB(Delta65-186), ShlB(Delta87-153), and ShlB(Delta126-200). ShlB(Delta126-200) frequently formed permanently open channels, whereas the conductance caused by ShlB(Delta65-186) and ShlB(Delta87-153) did not assume a stationary value, but fluctuated rapidly between open and closed configurations. The results demonstrate the orientation of large portions of ShlB in the outer membrane and suggest that ShlB may function as a specialized pore through which ShlA is secreted.  相似文献   

4.
The outer-membrane protein ShlB of Serratia marcescens activates and secretes hemolytic ShlA into the culture medium. Without ShlB, inactive ShlA (termed ShlA*) remains in the periplasm. Since Proteus mirabilis L-form cells lack an outer membrane and a periplasm, it was of interest to determine in which compartment recombinant ShlA* and ShlB are localized and whether ShlB activates ShlA*. The cloned shlB and shlA genes were transcribed in P. mirabilis stable L-form cells by the temperature-inducible phage T7 RNA polymerase. Radiolabeling, Western blotting, and complementation with C-terminally truncated ShlA (ShlA255) identified inactive ShlA* in the culture supernatant. ShlB remained cell-bound and did not activate ShlA without integration in an outer membrane. Although hemolytic ShlA added to L-form cells had access to the cytoplasmic membrane, it did not affect L-form cells. Synthesis of the large ShlA protein (165 kDa) in P. mirabilis L-form cells under phage T7 promoter control demonstrates that L-form cells are suitable for the synthesis and secretion of large recombinant proteins. This property and the easy isolation of released proteins make L-form cells suitable for the biotechnological production of proteins. Received: 17 February 1998 / Accepted: 30 June 1998  相似文献   

5.
Hemolysis by Serratia marcescens is caused by two proteins, ShlA and ShlB. ShlA is the hemolysin proper, and ShlB transports ShlA through the outer membrane, whereby ShlA is converted into a hemolysin. Superhemolytic ShlA derivatives that displayed 7- to 20-fold higher activities than wild-type ShlA were isolated. ShlA80 carried the single amino acid replacement of G to D at position 326 (G326D), ShlA87 carried S386N, and ShlA80III carried G326D and N236D. Superhemolysis was attributed to the greater stability of the mutant ShlA derivatives because they aggregated less than the wild-type hemolysin, which lost activity within 3 min at 20 degrees C. In contrast to the highly hemolytic wild-type ShlA at 0 degrees C, the hyperlytic hemolysins were nonhemolytic at 0 degrees C, suggesting that the hyperlytic derivatives differed from wild-type ShlA in adsorption to and insertion into the erythrocyte membrane. However, the size of the pores formed at 20 degrees C by superhemolytic hemolysins could not be distinguished from that of wild-type ShlA. In addition to the N-terminal sequence up to residue 238, previously identified to be important for activation and secretion, sites 326 and 386 contribute to hemolysin activity since they are contained in regions that participate in hemolysin inactivation through aggregation.  相似文献   

6.
The pore forming toxin of Serratia marcescens (ShlA) is secreted and activated by an outer membrane protein (ShlB). Activation of inactive ShlA (termed ShlA*) by ShlB is dependent on phosphatidylethanolamine (PE). Activation may be a covalent modification of ShlA. To test this hypothesis, the responsible activation domain (in the N-terminal 255 amino acids of ShlA) was isolated from whole bacteria with 8 M urea in an inactive form (ShlA-255*) and from the culture supernatant in an active form (ShlA-255), followed by a two-step purification by anion-exchange chromatography and gel permeation chromatography. Comparison of a tryptic peptide map of both forms with subsequent electrospray mass spectrometry (ES-MS) and sequencing by tandem ES-MS revealed no modification. These data imply that ShlB presumably imposes a conformation on ShlA-255 that triggers activity.  相似文献   

7.
The cytolytic and haemolytic activity of Serratia marcescens is determined by the ShlA protein, which is secreted across the outer membrane with the aid of the ShlB protein. In the absence of ShlB, inactive ShlA* remains in the periplasm of Escherichia coli transformed with an shlA-encoding plasmid, which indicates that ShlB converts ShlA* to active ShlA. ShlA* in a periplasmic extract and partially purified ShlA* were activated in vitro by partially purified ShlB. When both proteins were highly purified, ShlA* was only activated by ShlB when phosphatidylethanolamine (PE) or phosphatidylserine was added to the assay, while phosphatidylglycerol contributed little to ShlA* activation. Lyso-PE, cardiolipin, phosphatidylcholine, phosphatidic acid, lipopolysaccharide and various detergents could not substitute for PE. Although radioactively labelled PE was so tightly associated with ShlA that it remained bound to ShlA after heating and SDS–PAGE, it was not covalently linked to ShlA as PE could be removed by thin-layer chromatography with organic solvents. The number of PE molecules associated per molecule of ShlA was 3.9 ± 2.2. Active ShlA was inactivated by treatment with phospholipase A2, which indicated that PE is also required for ShlA activity. ShlA-255 (containing the 255 N-terminal amino acids of ShlA) reversibly complemented ShlA* to active ShlA and was inactivated by phospholipase A2, which demonstrated that PE binds to the N-terminal portion of ShlA; this region has previously been found to be involved in ShlA secretion and activation. Electrospray mass spectroscopy of ShlA-255 determined a molar mass that corresponded to that of unmodified ShlA-255. An E. coli mutant that synthesized only minute amounts of PE did not secrete ShlA but contained residual cell-bound haemolytic activity. Since PE binds strongly to ShlA* in the absence of ShlB without converting ShlA* to haemolytic ShlA, ShlB presumably imposes a conformation on ShlA that brings PE into a position to mediate interaction of the hydrophilic haemolysin with the lipid bilayer of the eukaryotic membrane.  相似文献   

8.
K Poole  E Schiebel    V Braun 《Journal of bacteriology》1988,170(7):3177-3188
The nucleotide sequence of a 7.3-kilobase-pair fragment of DNA encoding a hemolytic activity from Serratia marcescens was determined. Two large open reading frames were identified, designated shlA (Serratia hemolysin) and shlB, capable of encoding polypeptides of 165, 056 and 61,897 molecular weight, respectively. Both reading frames were expressed in vivo. The shlB gene product was localized to the outer membrane of Escherichia coli cells harboring the S. marcescens hemolysin determinant. Consistent with this location, a signallike sequence was identified at the N terminus of the polypeptide predicted from the nucleotide sequence of the shlB gene. Hyperexpression of the shlB locus permitted the identification of two shlB-encoded polypeptides of 65,000 and 62,000 molecular weight, respectively. Determination of the N-terminal amino acid sequence of the purified 62,000-molecular-weight protein confirmed that it was the mature form of the ShlB protein initially synthesized as a precursor (65,000-molecular-weight protein). By using polyclonal antisera raised against the purified proteins, ShlA and ShlB were identified in the outer membrane of S. marcescens. The shlA gene product was shown to interact with erythrocyte membranes, confirming it as the hemolysin proper. Both hemolysis and the interaction of ShlA with erythrocyte membranes did, however, require the ShlB function. Progressive deletion of the C terminus of the ShlA protein gradually reduced hemolytic activity until 37% of the amino acids had been removed. Elimination of 54% of the amino acids produced a nonhemolytic protein which, however, was still capable of associating with erythrocyte membranes.  相似文献   

9.
The haemolysin of Serratia marcescens (ShlA) is translocated through the cytoplasmic membrane by the signal peptide-dependent export apparatus. Translocation across the outer membrane (secretion) is mediated by the ShIB protein. Only the secreted form of ShlA is haemolytic. ShIB also converts in vitro inactive ShlA (ShlA*), synthesized in the absence of ShIB, into the haemolytic form (a process termed activation). To define regions in ShlA involved in both processes, ShlA derivatives were isolated and tested for secretion and activation. Analysis of C-terminally truncated proteins (ShlA) assigned the secretion signal to the amino-terminal 238 residues of ShlA. Trypsin cleavage of a secreted ShlA' derivative yielded a 15kDa N-terminal fragment, by which a haemolytically inactive ShlA* protein could be activated in vitro. It is suggested that the haemolysin activation site is located in this N-terminal fragment. Replacement of asparagine-69 and asparagine-109 by isoleucine yielded inactive haemolysin derivatives. Both asparagine residues are part of two short sequence motifs, reading Ala-Asn-Pro-Asn, which are critical to both activation and secretion. These point mutants as well as N-terminal deletion derivatives which were not activated by ShIB were activated by adding a non-haemolytic N-terminal fragment synthesized in an ShIB+ strain (complementation). Apparently the activated N-terminal fragment substituted for the missing activation of the ShlA derivatives and directed them into the erythrocyte membrane, where they formed pores. It is concluded that activation is only required for initiation of pore formation, and that in vivo activation and secretion are tightly coupled processes. Complementation may also indicate that haemolysin oligomers form the pores.  相似文献   

10.
The haemolytic activity of Serratia marcescens is determined by two proteins, ShlA and ShlB. ShlA integrates into the erythrocyte membrane and causes osmotic lysis through channel formation. The conformation of ShlA and its interaction with erythrocyte membranes were studied by determining the cleavage of ShlA by added trypsin. Our results suggest that the conformation of inactive ShlA (from an ShlB- strain) differs from the active ShlA, and that in a hydrophobic environment (detergent or membrane) active ShlA assumes a conformation distinct from that in buffer. Only active haemolysin adsorbed to erythrocytes. ShlA was firmly integrated into the erythrocyte membrane since it was only released under conditions which also dissolved the integral erythrocyte membrane proteins. Moreover, ShlA integrated into 'ghosts' remained there and was not haemolytic when incubated with erythrocytes. From the trypsin cleavage pattern obtained with haemolysin and C-terminally truncated, but still active, haemolysin derivatives integrated into erythrocytes, and sealed and unsealed erythrocyte 'ghosts', we conclude that ShlA is preferentially cleaved by trypsin at a few sites but only from the inside of the erythrocyte. Haemolysin in the erythrocyte membrane forms a water-filled channel and is resistant to trypsin and other proteases.  相似文献   

11.
The gram-negative bacterium Bordetella pertussis has adapted specific secretion machineries for each of its major secretory proteins. In particular, the highly efficient secretion of filamentous hemagglutinin (FHA) is mediated by the accessory protein FhaC. FhaC belongs to a family of outer membrane proteins which are involved in the secretion of large adhesins or in the activation and secretion of Ca2+-independent hemolysins by several gram-negative bacteria. FHA shares with these hemolysins a 115-residue-long amino-proximal region essential for its secretion. To compare the secretory pathways of these hemolysins and FHA, we attempted functional transcomplementation between FhaC and the Proteus mirabilis hemolysin accessory protein HpmB. HpmB could not promote the secretion of FHA derivatives. Likewise, FhaC proved to be unable to mediate secretion and activation of HpmA, the cognate secretory partner of HpmB. In contrast, ShlB, the accessory protein of the closely related Serratia marcescens hemolysin, was able to activate and secrete HpmA. Two invariant asparagine residues lying in the region of homology shared by secretory proteins and shown to be essential for the secretion and activation of the hemolysins were replaced in FHA by site-directed mutagenesis. Replacements of these residues indicated that both are involved in, but only the first one is crucial to, FHA secretion. This slight discrepancy together with the lack of functional complementation demonstrates major differences between the hemolysins and FHA secretion machineries.  相似文献   

12.
13.
POTRA (for polypeptide-transport-associated domain) is a novel domain identified in proteins of the ShlB, Toc75, D15 and FtsQ/DivIB families. In most cases, the POTRA domain is associated with a beta-barrel outer membrane domain and its function has been experimentally related to polypeptide transport in Toc75 (Tic-Toc protein import system in chloroplast) and ShlB families. In addition to potential key roles in protein transport across the outer membrane and in bacterial septation, the POTRA domain has attractive features for vaccine development in diseases such as cholera, meningitis, gonorrhoea and syphilis.  相似文献   

14.
The Serratia marcescens metalloprotease (protease SM) belongs to a family of proteins secreted from gram-negative bacteria by a signal peptide-independent pathway which requires a specific transporter consisting of three proteins: two in the inner membrane and one in the outer membrane. The prtDSM and prtESM genes encoding the two S. marcescens inner membrane components were cloned and expressed in Escherichia coli. Their nucleotide sequence revealed high overall homology with the two analogous inner membrane components of the Erwinia chrysanthemi protease secretion apparatus and lower, but still significant, homology with the two analogous inner membrane components of the E. coli hemolysin transporter. When expressed in E. coli, these two proteins, PrtDSM and PrtESM, allowed the secretion of protease SM only in the presence of TolC protein, the outer membrane component of the hemolysin transporter.  相似文献   

15.
For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 ? into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system. Electronic Publication  相似文献   

16.
R Binet  C Wandersman 《The EMBO journal》1995,14(10):2298-2306
The Erwinia chrysanthemi metalloprotease C and the Serratia marcescens haem acquisition protein HasA are both secreted from Gram-negative bacteria by a signal peptide-independent pathway which requires a C-terminal secretion signal and a specific ABC-transporter made up of three proteins: a membrane ATPase (the ABC-protein), a second inner membrane component belonging to the membrane fusion protein family and an outer membrane polypeptide. HasA and protease C transporters are homologous although the secreted polypeptides share no sequence homology. Whereas protease C can use both translocators, HasA is secreted only by its specific transporter. Functional analysis of protease C and HasA secretion through hybrid transporters obtained by combining components from each system demonstrates that the ABC-protein is responsible for the substrate specificity and that inhibition of protease C secretion in the presence of HasA results from a defective interaction between HasA and the ABC-protein. We also show that the outer membrane protein, TolC, can combine with the membrane fusion protein HasE in the presence of either ABC-protein to form a functional transporter but not with the membrane fusion protein, PrtE. This indicates a specific interaction between the outer membrane component and the membrane fusion protein.  相似文献   

17.
Transport of hemolysin by Escherichia coli   总被引:25,自引:0,他引:25  
The hemolytic phenotype in Escherichia coli is determined by four genes. Two (hlyC and hlyA) determine the synthesis of a hemolytically active protein which is transported across the cytoplasmic membrane. The other two genes (hlyBa and hlyBb) encode two proteins which are located in the outer membrane and seem to form a specific transport system for hemolysin across the outer membrane. The primary product of gene hlyA is a protein (protein A) of 106,000 daltons which is nonhemolytic and which is not transported. No signal peptide can be recognized at its N-terminus. In the presence of the hlyC gene product (protein C), the 106,000-dalton protein is processed to the major proteolytic product of 58,000 daltons, which is hemolytically active and is transported across the cytoplasmic membrane. Several other proteolytic fragments of the 106,000-dalton protein are also generated. During the transport of the 58,000-dalton fragment (and possible other proteolytic fragments of hlyA gene product), the C protein remains in the cytoplasm. In the absence of hlyBa and hlyBb the entire hemolytic activity (mainly associated with the 58,000-dalton protein) is located in the periplasm: Studies on the location of hemolysin in hlyBa and hlyBb mutants suggest that the gene product of hlyBa (protein Ba) binds hemolysin and leads it through the outer membrane whereas the gene product of hlyBb (protein Bb) releases hemolysin from the outer membrane. This transport system is specific for E coli hemolysin. Other periplasmic enzymes of E coli and heterologous hemolysin (cereolysin) are not transported.  相似文献   

18.
Secretion of Escherichia coli hemolysin is mediated by a sec-independent pathway which requires the products of at least three genes, hlyB, hlyD and tolC. Two regions of HlyD were studied. The first region (region A), consisting of the 33-amino acid, C-terminal part of the HlyD protein, is predicted to form a potential helix-loop-helix structure. This sequence is conserved among HlyD analogues of similar transport systems of other bacterial species. Using site-directed mutagenesis, we showed that the amino acids Leu475, Glu477 and Arg478 of this region are essential for HlyD function. The last amino acid of HlyD, Arg478, is possibly involved in the release of the HlyA protein, since cells bearing a hlyD gene mutant at this position produce similar amounts of HlyA to the wild-type strain, but most of the protein remains cell-associated. Competition experiments between wild-type and mutant HlyD proteins indicate that region A interacts directly with a component of the secretion apparatus. The second region of HIyD (region B), located between amino acids Leul27 and Leu170, is highly homologous to the otherwise unrelated outer membrane protein TolC. Deletion of this region abolishes secretion of hemolysin. This sequence of HlyD also seems to interact with a component of the hemolysin secretion machinery since a hybrid HIyD protein carrying the corresponding TolC sequence, although inactive in the transport of HlyA, is able to displace wild-type HlyD from the secretion apparatus.  相似文献   

19.
One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, issec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins: two inner membrane proteins: an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide.Erwinia chrysanthemi metalloproteinases B and C, andSerratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Interaction between the ABC protein and its substrate has also been evidenced by studies on proteinase and HasA hybrid transporters obtained by combining components from each system. Association between hemoprotein HasA and the three exporter/secretion proteins was demonstrated by affinity chromatography on hemin agarose on which the substrate remained bound with the three secretion proteins. The three component association was ordered and substrate binding was required for the formation of this multiprotein complex. Presented at the SymposiumRegulatory Aspects of Bacterial Cell Biology, Prague, October 16–17, 1996.  相似文献   

20.
We previously identified a Serratia marcescens extracellular protein, HasA, able to bind heme and required for iron acquisition from heme and hemoglobin by the bacterium. This novel type of extracellular protein does not have a signal peptide and does not show sequence similarities to other proteins. HasA secretion was reconstituted in Escherichia coli, and we show here that like many proteins lacking a signal peptide, HasA has a C-terminal targeting sequence and is secreted by a specific ATP binding cassette (ABC) transporter consisting of three proteins, one inner membrane protein with a conserved ATP binding domain, called the ABC; a second inner membrane protein; and a third, outer membrane component. Since the three S. marcescens components of the HasA transporter have not yet been identified, the reconstituted HasA secretion system is a hybrid. It consists of the two S. marcescens inner membrane-specific components, HasD and HasE, associated with an outer membrane component coming from another bacterial ABC transporter, such as the E. coli TolC protein, the outer membrane component of the hemolysin transporter, or the Erwinia chrysanthemi PrtF protein, the outer membrane component of the protease transporter. This hybrid transporter was first shown to allow the secretion of the S. marcescens metalloprotease and the E. chrysanthemi metalloproteases B and C. On account of that, the two S. marcescens components HasD and HasE were previously named PrtDSM and PrtESM, respectively. However, HasA is secreted neither by the PrtD-PrtE-PrtF transporter (the genuine E. chrysanthemi protease transporter) nor by the HlyB-HlhD-TolC transporter (the hemolysin transporter). Moreover, HasA, coexpressed in the same cell, strongly inhibits the secretion of proteases B and C by their own transporter, indicating that the E. chrysanthemi transporter recognizes HasA. Since PrtF could replace TolC in the constitution of the HasA transporter, this indicates that the secretion block does not take place at the level of the outer membrane component but rather at an earlier step of interaction between HasA and the inner membrane components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号