首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   5篇
  国内免费   11篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   10篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   10篇
  2004年   3篇
  2003年   8篇
  2002年   5篇
  1999年   1篇
排序方式: 共有79条查询结果,搜索用时 248 毫秒
1.
2.
The distal metastasis is the main cause of death in patients with colon cancer. Tyrosine receptor kinase B (TrkB) and ERK signals may be the potential targets for the treatment of colon cancer metastasis. This study aims to investigate whether erlotinib inhibits distant metastasis of colon cancer by regulating TrkB and ERK signaling pathway. Human colon adenocarcinoma cell lines (SW480 and Caco-2) pretreated with exogenous C-X-C motif chemokine ligand 8 (CXCL8) were used to assess the suppressive effect of erlotinib on tumor metastasis, including anoikis, epithelial-mesenchymal transformation (EMT), migration, and invasion. Through TrkB overexpression, Akt suppression, and ERK suppression, the roles of TrkB, Akt, and ERK in erlotinib-induced metastasis inhibition of colon cancer cells were explored. The results showed that erlotinib alleviated CXCL8-induced metastasis of the colon cancer cells. Overexpression of TrkB in colon cancer cells eliminated the effect of erlotinib on anoikis, inhibition of EMT, migration, and invasion, and downregulation of p-ERK and p-Akt. Furthermore, the inhibition of ERK activation instead of Akt activation was found to participate in erlotinib-mediated metastasis resistance, including anoikis, inhibition of EMT, migration, and invasion. In conclusion, erlotinib inhibits colon cancer cell anoikis resistance, EMT, migration, and invasion by inactivating TrkB-dependent ERK signaling pathway.  相似文献   
3.
4.
Triple negative breast cancer (TNBC) represents an anomalous subset of breast cancer with a greatly reduced (30%) 5-year survival rate. The enhanced mortality and morbidity of TNBC arises from the high metastatic rate, which requires the acquisition of AnR, a process whereby anchorage-dependent cells become resistant to cell death induced by detachment. In this study TNBC cell lines were selected for AnR, and these cell lines demonstrated dramatic enhancement in the formation of lung metastases as compared with parental cells. Genetic analysis of the AnR subclones versus parental cells via next generation sequencing and analysis of global alternative RNA splicing identified that the mRNA splicing of cytoplasmic polyadenylation element binding 2 (CPEB2), a translational regulator, was altered in AnR TNBC cells. Specifically, increased inclusion of exon 4 into the mature mRNA to produce the CPEB2B isoform was observed in AnR cell lines. Molecular manipulations of CPEB2 splice variants demonstrated a key role for this RNA splicing event in the resistance of cells to anoikis. Specifically, down-regulation of the CPEB2B isoform using siRNA re-sensitized the AnR cell lines to detachment-induced cell death. The ectopic expression of CPEB2B in parental TNBC cell lines induced AnR and dramatically increased metastatic potential. Importantly, alterations in the alternative splicing of CPEB2 were also observed in human TNBC and additional subtypes of human breast cancer tumors linked to a high metastatic rate. Our findings demonstrate that the regulation of CPEB2 mRNA splicing is a key mechanism in AnR and a driving force in TNBC metastasis.  相似文献   
5.
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.  相似文献   
6.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   
7.
8.
Multiple roles of matrix metalloproteinases during apoptosis   总被引:5,自引:0,他引:5  
Structural, molecular and biochemical approaches have contributed to piecing together the puzzle of how matrix metalloproteinases (MMPs) work and contribute to various disease processes. However, MMPs have many unexpected substrates other than components of the extracellular matrix which profoundly influence cell behaviour, survival and death. With the current understanding of diverse/novel roles of matrix metalloproteinases—particularly their direct or indirect relevance for the early steps during programmed cell death—some seemingly contrasting results seem less surprising. To better target MMPs an appreciation of their many extracellular, intracellular and intranuclear functions, often acting in opposing directions with paradoxical roles in cell death, is carefully required.  相似文献   
9.
Prostaglandins and activation of AC/cAMP prevents anoikis in IEC-18   总被引:2,自引:0,他引:2  
Recent data indicates that chronic inflammation of the intestine such as Crohn's or ulcerative colitis puts those individuals at heightened risk for colorectal adenocarcinoma. In this study, we examine the effect of the inflammatory mediator PGE2 and associated signalling on detachment-induced cell death (anoikis) in intestinal epithelial cells. Treatment of detached IEC-18 with 0.01–0.05 μM PGE2 increased cell viability as well as induced aggregation. As EP4 prostaglandin receptors on IEC are coupled to adenylate cyclase, we next treated cells with agents that promote cAMP signalling (Forskolin, dbcAMP, and etazolate), all of which promoted IEC aggregation as well as survival. We next treated detached IECs with specific inhibitors of adenylate cyclase or PKA, which accelerated anoikis. To explore the mechanism of cell-cell adhesion, we next treated detached IECs with an anti-E-cadherin blocking antibody which dispersed aggregates induced by dbcAMP, and an adenovirus expressing a dominant negative E-cadherin (EcadΔEC) prevented aggregate formation. Interestingly EcadΔEC prevented aggregation of IEC induced by dbcAMP but did not significantly reduce viability. This suggests that cAMP signalling is important in both aggregate formation and promoting viability but these are distinct events. Taken together, these data support a mechanism whereby elevated PGE2 levels characteristic of colitis prevent anoikis by activating an AC-, cAMP-, and PKA-dependent signalling pathway. The delay of apoptosis by PGE2 may be one mechanism by which inflammation may contribute to carcinogenesis.  相似文献   
10.
Summary Death-associated protein (DAP)-kinase, an actin-cytoskeleton localized serine/threonine kinase, functions as a novel tumor suppressor and participates in a wide variety of cell death systems. Recent studies indicate that DAP-kinase elicits a potent cytoskeletal reorganization effect and is capable of modulating integrin inside-out signaling. Using this understanding of DAP-kinase protein function as a framework, we discuss the functional mechanisms of this kinase in regulating death-associated morphological and signaling events. Furthermore, a potential role of DAP-kinase to be a drug target is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号