首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有13条查询结果,搜索用时 429 毫秒
1.
2.
3.
为发掘能源植物小桐子(Jatropha curcas)的YABBY转录因子,以最新公布的小桐子基因组序列为参考,在全基因组层面鉴定出5个亚家族的7个YABBY基因,同一亚家族的成员具有相似的氨基酸序列、基因结构和保守基序组成。YAB2和FIL/YAB3亚家族的2个旁系同源基因对(JcYAB2A/JcYAB2B、JcYAB1/JcYAB3)具有良好的共线性关系,表明片段复制或全基因组复制是小桐子YABBY家族扩张的主要方式。纯化选择是进化的主要动力,而YAB2亚家族成员可能在进化中经历了更明显的功能分化。基因表达模式和蛋白互作预测分析表明JcYAB2B和JcYAB3可能在种子的发育过程中起到重要的调控作用;同时,细胞分裂素、干旱或高盐胁迫处理抑制了大多数JcYABs成员的基因表达。此外,转录组测序结合q RT-PCR分析表明,低温处理有效诱导JcYAB2A和JcYAB2B的基因表达模式发生变化,并伴随着新的、截短的可变剪接转录本的动态积累。因此,推测JcYABs可能通过剪接体的功能竞争或功能互补参与低温响应的调节,这些结果有助于更好地了解YABBY家族成员的功能分化并阐明可变剪接如何调控...  相似文献   
4.
5.
小麦TaCRC基因的克隆及表达分析   总被引:2,自引:1,他引:1  
以小麦心皮为材料,利用RT-PCR方法分离出一个新的YABBY基因TaCRC,并利用Northern杂交对TaCRC在不同组织中的表达模式进行分析.结果显示:该基因全长1 105 bp,编码199个氨基酸.TaCRC具有YABBY家族典型的结构域,即N端含有C2C2锌指结构域,C端含有YABBY结构域.其氨基酸序列与水稻的 DROOPING LEAF(DL)、拟南芥的CRABS CLAW(CRC)和金鱼草的AmCRC的氨基酸具有较高的一致性.TaCRC在心皮中特异表达,类似于拟南芥的CRC的表达模式.研究表明,TaCRC是小麦中的CRC同源基因.  相似文献   
6.
Peltate leaf architecture has evolved from conventional bifacial leaves many times in flowering plant evolution. Characteristics of peltate leaves, such as the differentiation of a cross zone and of a radially symmetric, margin-less petiole, have also been observed in mutants of genes responsible for adaxial-abaxial polarity establishment. This suggests that altered regulation of such genes provided a mechanism for the evolution of peltate leaf structure. Here, we show that evolution of leaf peltation in Tropaeolum majus, a species distantly related to Arabidopsis thaliana, was associated with altered expression of Tropaeolum majus FILAMENTOUS FLOWER (TmFIL), a gene conferring abaxial identity. In situ hybridization indicates that adaxial and abaxial domains are established in early leaf primordia as in species with bifacial leaves. Upon initiation of the cross zone by fusion of the blade margins, localized expansion of TmFIL to the upper leaf side could be seen, indicating a local loss of adaxial leaf identity. The observed changes in expression are consistent with a role of TmFIL in radialization of the petiole and circularization of the leaf blade margin by the cross zone. In addition, expression was observed in segment primordia and during expansion of the bifacial blade, suggesting additional roles for TmFIL in leaf development.  相似文献   
7.
Ectopic expression of OsYAB1causes extra stamens and carpels in rice   总被引:1,自引:0,他引:1  
  相似文献   
8.
INNER NO OUTER (INO) expression is limited to the abaxial cell layer of the incipient and developing outer integument in Arabidopsis ovules. Using deletion analysis of the previously defined INO promoter (P-INO), at least three distinct regions that contribute to the endogenous INO expression pattern were identified. One such positive element, designated POS9, which comprises at least three distinct subelements, was found to include sufficient information to duplicate the INO expression pattern when four or more copies were used in conjunction with a heterologous minimal promoter. While known regulators of INO, including INO, SUPERMAN, BELL1, and AINTEGUMENTA, did not detectably interact with POS9 in yeast one-hybrid assays, two groups of proteins that interact specifically with POS9 were identified in one-hybrid library screens. Members of one group include C2H2 zinc finger motifs. Members of the second group contain a novel, conserved DNA-binding region and were designated the BASIC PENTACYSTEINE (BPC) proteins on the basis of conserved features of this region. The BPC proteins are nuclear localized and specifically bind in vitro to GA dinucleotide repeats located within POS9. The widespread expression patterns of the BPCs and the large number of GA repeat potential target sequences in the Arabidopsis genome indicate that BPC proteins may affect expression of genes involved in a variety of plant processes.  相似文献   
9.
Genes involved in the differentiation and development of tissues and organs are temporally and spatially regulated in plant development. The DROOPING LEAF (DL) gene, a member of the YABBY gene family, promotes midrib formation in the leaf and carpel specification in the flower. Consistent with these functions, DL is initially expressed in the central region of the leaf primordia (presumptive midrib) and in the presumptive carpel primordia in the meristem. To understand the regulatory mechanism underlying DL expression, we tried to identify cis-regulatory regions required for temporal and spatial expression of this gene. We found that the cis region responsible for the presumptive midrib-specific expression in the leaf primordia is located in intron 2. Next, we confined the region to a sequence of about 200bp, which corresponds to a conserved non-coding sequence (CNS) identified by phylogenetic footprinting. In addition, a sequence termed DG1, incorporating a 5' upstream region of about 7.4kb, and introns 1 and 2, was shown to be sufficient to induce DL in the presumptive midrib, and to suppress it in other regions in the leaf primordia. By contrast, the regulatory region required for carpel-specific expression was not included in the DG1 sequence. We modified Oryza sativa (rice) plant architecture by expressing an activated version of DL (DL-VP16) in a precise manner using the DG1 sequence: the resulting transgenic plant produced a midrib in the distal region of the leaf blade, where there is no midrib in wild type, and formed more upright leaves compared with the wild type.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号