首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   1篇
  国内免费   2篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   9篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1974年   1篇
排序方式: 共有92条查询结果,搜索用时 453 毫秒
1.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   
2.
The present study demonstrates the feasibility of measuring acetylcholine in perfusion samples collected by means of in vivo brain dialysis in the striata of freely moving rats. The output of the dialysis device was directly connected to an automated sample valve of a HPLC-assay system that comprises a cation exchanger, a post-column enzyme reactor, and an electrochemical detector. The presence of an acetylcholinesterase inhibitor (neostigmine) in the perfusion fluid was required for the detection of acetylcholine in the perfusate. Increasing concentrations of neostigmine induced increasing amounts of acetylcholine. Continuous perfusion with a fixed concentration (2 microM) of neostigmine resulted in gradually increasing amounts of collected acetylcholine over time although a considerable variation between successive samples exists. The brain dialysis technique was further validated by studying the effect of various drugs. Systemically administered atropine increased the output of acetylcholine, whereas the addition of tetrodotoxin to the perfusion fluid resulted in a complete disappearance of the neurotransmitter.  相似文献   
3.
1. Two mutants of the sodium channel II have been expressed inXenopus oocytes and have been investigated using the patch-clamp technique. In mutant E387Q the glutamic acid at position 387 has been replaced by glutamine, and in mutant D384N the aspartic acid at position 384 has been replaced by asparagine.2. Mutant E387Q, previously shown to be resistant to block by tetrodotoxin (Noda et al. 1989), has a single-channel conductance of 4 pS, that can be easily measured only using noise analysis. At variance with the wild-type, the openchannel current-voltage relationship of mutant E387Q is linear over a wide voltage range even under asymmetrical ionic conditions.3. Mutant D384N has a very low permeability for any of the following ions: Cl, Na+, K+, Li+, Rb+, Ca2+, Mg2+, NH4 + , TMA+, TEA+. However, asymmetric charge movements similar to the gating currents of the Na+-selective wild-type are still observed.4. These results suggest that residues E387 and D384 interact directly with the pathway of the ions permeating the open channel.Abbreviations TTX tetrodotoxin; Na+, sodium; K+, potassium; - NFR normal frog Ringer - HEPES N-2-hydroxylethyl piperazine-N-2-ethanesulfonic acid - EGTA ethyleneglycol-bis(-amino-ethyl ether) N,N,N',N'-tetra acetic acid - TEA tetraethylammonium - TMA tetramethylammonium;I g , gating current; , single-channel conductance  相似文献   
4.
Ionic channels are discrete sites at which the passive movement of ions takes place during nervous excitation. Three types of channels are distinguished. 1. Leakage channels that are permanently open to various cations. 2. Na channels that open promptly on depolarization but slowly close again (inactivate) on sustained depolarization and that are predominantly permeable to Na+ ions. 3. K channels that on depolarization open after some delay but stay open and that are mainly passed by K+ ions. The selectivity sequence of the Na channels of the squid axon (or frog nerve) is as follows: Na+ ≈ Li+>(T1+)>NH+ 4?K+> Rb+, Cs+; that of K channels is: (T1+)>K+>Rb+>NH+ 4?Na+, Cs+, Na channels are selectively blocked by tetrodotoxin (TTX) or saxitoxin (STX), K channels by tetraethylammonium ions (TEA). Either channel type is reversibly blocked when one drug molecule binds to one site per channel, the equilibrium dissociation constant of these reactions being about 3×10?9 MTTX (or STX) and 4×10?4 M TEA, respectively. Because of their specificity and high affinity, TTX and STX are used to “titrate” the Na channels whose density appears to be of the order of 100/Μm2. The “gates” of the channels operate as a function of potential and time but independent of the permeating ion species. Drugs (e.g. veratridine) and enzymes (e.g. pronase, applied intraaxonally) cause profound changes in the gating function of the Na channels without influencing their selectivity. This points to separate structures for gating and ion discrimination. The latter is thought to be, in part, brought about by a “selectivity filter” of which detailed structural ideas exist. Recent experiments suggest that the gates of the Na channels are controlled by charged particles moving within the membrane under the influence of the electrical field.  相似文献   
5.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   
6.
Voltage-gated Na+ channels are expressed by highly metastatic MAT-LyLu cells, but not by poorly metastatic AT-2 cells, derived from the rodent Dunning model of prostatic cancer. We have investigated the possible involvement of these channels in the morphological development of the cells. Incubation of both the MAT-LyLu and the AT-2 cell line for 24 h with the Na+ channel blocker tetrodotoxin (TTX) at 6 μM altered the morphology only of the MAT-LyLu cell line. TTX produced significant decreases in: (a) cell process length and (b) field diameter, and increases in (c) cell body diameter and (d) process thickness. Importantly, 6 μM TTX had no significant effects on proliferation rates or cellular toxicity. The results suggest that Na+ channel activity plays a significant role in determining the morphological development of MAT-LyLu cells in such a way as to enhance their metastatic potential. Received: 9 March 1998 / Accepted: 5 October 1998  相似文献   
7.
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.  相似文献   
8.
Recent research communications indicate that the adult human brain contains undifferentiated, multipotent precursors or neural stem cells. It is not known, however, whether these cells can develop into fully functional neurons. We cultured cells from the adult human ventricular wall as neurospheres and passed them at the individual cell level to secondary neurospheres. Following dissociation and plating, the cells developed the antigen profile of the three main cell types in the brain (GFAP, astrocytes; O2, oligodendrocytes; and beta-III-tubulin/NeuN, neurons). More importantly, the cells developed the electrophysiological profiles of neurons and glia. Over a period of 3 weeks, neuron-like cells went through the same phases as neurons do during development in vivo, including up-regulation of inward Na+ -currents, drop in input resistance, shortening of the action potential, and hyperpolarization of the cell membrane. The cells developed overshooting action potentials with a mature configuration. Recordings in voltage-clamp mode displayed both the fast inactivating TTX-sensitive sodium current (INa) underlying the rising phase of the action potential and the two potassium currents terminating the action potential in mature neurons (IA and IK, sensitive to 4-AP and TEA, respectively). We have thus demonstrated that the human ventricular wall contains multipotent cells that can differentiate into functionally mature neurons.  相似文献   
9.
The objective of this investigation was to study the distribution of tetrodotoxin (TTX) in the xanthid crab (Atergatis floridus) found in the coastal waters of Kanagawa and Wakayama Prefectures of Japan using mouse assay methods. We used 32 crab samples (18 males and 14 females) and toxicity was analyzed on 13 parts of the body of each sample. The muscle of chelipeds was found to be toxic in all the samples with a wide range of toxicity (5–237 MU/g), whereas the toxicity in the muscle of the cephalothorax was found to be non-toxic (below detectable limit) in all the samples [Narita, H., Watanabe, K., Baba, K., Ohgami, H., Ai, T.K., Igarashi, Y., Nara, M., Noguchi, T., Hashimoto, K., 1987. The toxicity of digestive gland of trampet shells inhabiting the coast of Shizuoka Prefecture. J. Food Hyg. Soc. Jpn. 28, 115–118.]. Further investigation of different parts of the chelipeds indicated that the muscle of the palm and carpus are usually toxic and that of merus and ischium are almost non-toxic. Toxicity of the muscles of palm ranged between 7 and 52 MU/g, whereas toxicity of the muscle of ischium was below detectable limit. Results from our study indicate clear contrast in the distribution of tetrodotoxin in muscles of different parts of the xanthid crabs, plausibly due to some inherent physiological mechanism. Further investigation is necessary to understand the mechanism responsible for such contrast.  相似文献   
10.
It has been documented that nodose neurons express TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na(+) channels. However, wheteher nodose neurons functionally express persistent TTX-R Na(+) currents has not been reported. The present study first demonstrated persistent TTX-R Na(+) channel activities in 7/19 C-type nodose neurons in the presence of PGE(2) using whole-cell patch. Voltage-dependent property showed that persistent TTX-R Na(+) currents were activated at near -60mV and channels were maintained open. The average peak was approximately 300-500pA. The mid-point of activation exhibited a greater shift to a more hyperpolarized potential in the neurons co-expressing TTX-R and persistent TTX-R Na(+) currents than those expressing TTX-R only. This effect of PGE(2) was also mimicked by Forskolin. The fact that persistent TTX-R Na(+) currents were only activated by PGE(2) suggested that the modulatory effects of PGE(2) on persistent TTX-R Na(+) currents are crucial in PGE(2)-mediated neuronal excitability, and may have a great impact on specifically physiological significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号