首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2437篇
  免费   76篇
  国内免费   42篇
  2023年   55篇
  2022年   58篇
  2021年   110篇
  2020年   69篇
  2019年   86篇
  2018年   64篇
  2017年   39篇
  2016年   32篇
  2015年   47篇
  2014年   90篇
  2013年   94篇
  2012年   52篇
  2011年   52篇
  2010年   68篇
  2009年   77篇
  2008年   82篇
  2007年   87篇
  2006年   103篇
  2005年   73篇
  2004年   54篇
  2003年   47篇
  2002年   43篇
  2001年   39篇
  2000年   41篇
  1999年   33篇
  1998年   47篇
  1997年   44篇
  1996年   34篇
  1995年   48篇
  1994年   38篇
  1993年   42篇
  1992年   38篇
  1991年   37篇
  1990年   47篇
  1989年   43篇
  1988年   44篇
  1987年   58篇
  1986年   46篇
  1985年   48篇
  1984年   52篇
  1983年   43篇
  1982年   48篇
  1981年   43篇
  1980年   22篇
  1979年   30篇
  1978年   14篇
  1977年   18篇
  1976年   19篇
  1973年   18篇
  1970年   9篇
排序方式: 共有2555条查询结果,搜索用时 78 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
3.
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12–Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12–Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113–131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64–99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.  相似文献   
4.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
5.
Intestinal cholesterol absorption is specifically inhibited by the 2-azetidinone cholesterol absorption inhibitor ezetimibe. Photoreactive ezetimibe analogues specifically label a 145-kDa protein in the brush border membrane of enterocytes from rabbit small intestine identified as aminopeptidase N (CD13). In zebrafish and mouse small intestinal cytosol, a heterocomplex of Mr 52 kDa between annexin II and caveolin 1 was suggested as a target of ezetimibe. In contrast, in the cytosol and brush border membrane vesicles (BBMV) from rabbit small intestine of control animals or rabbits treated with the nonabsorbable cholesterol absorption inhibitor AVE 5530, both annexin II and caveolin 1 were exclusively present as monomers without any heterocomplex formation. Upon immunoprecipitation with annexin II a 52-kDa band was observed after immunostaining with annexin II antibodies, whereas no staining of a 52-kDa band occurred with anti-caveolin 1 antibodies. Vice versa, a 52-kDa band obtained by immunoprecipitation with caveolin 1 antibodies did not stain with annexin II-antibodies. The intensity of the 52-kDa band was dependent on the amount of antibody and was also observed with anti-actin or anti-APN antibodies suggesting that the 52-kDa band is a biochemical artefact. After incubation of cytosol or BBMV with radioactively labelled ezetimibe analogues, no significant amounts of the ezetimibe analogues could be detected in the immunoprecipitate with caveolin-1 or annexin II antibodies. Photoaffinity labelling of rabbit small intestinal BBMV with ezetimibe analogues did not result in labelling of proteins being immunoreactive with annexin II, caveolin 1 or a 52-kDa heterocomplex. These findings indicate that the rabbit small intestine does not contain an annexin II/caveolin 1 heterocomplex as a target for ezetimibe.  相似文献   
6.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
7.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
8.
Blood coagulation factor X (FX) is converted to its active form (FXa) by a membrane bound multi-protein enzyme complex, comprised of factor VIII (FVIII), factor IXa (FIXa) and FX. Characterization of the molecular forces involved in the association of these proteins with phospholipids is crucial to understanding how these proteins bind to the lipid milieux of physiological membranes. In this report, the molecular forces involved in the association of FVIII, FIXa or FX with phospholipid vesicles (PLV) were characterized by ligand affinity chromatographic analyses. Treating FVIII-affinity columns with agents that disrupt electrostatic interactions caused elution of 15.2% of the total bound PLV, while agents that disrupt hydrophobic interactions caused elution of 84.8% of the total bound PLV. These results demonstrate that the association of PLV with FVIII is primarily hydrophobic. In contrast, the association of PLV with FIXa or FX is largely the result of electrostatic forces. This was established by observing that 71.3% and 78.9% of the total bound PLV was eluted from FIXa- and FX-affinity columns, respectively, by agents that disrupt electrostatic interactions. Of the total bound PLV, 28.7% and 21.2% were eluted from FIXa- and FX-affinity columns, respectively, by agents that disrupt hydrophobic interactions. These data demonstrate that hydrophobic forces play a heretofore unrecognized role in the association of PLV with FIXa or FX.  相似文献   
9.
Summary The voltage-dependent sodium channel from the eel electroplax was purified and reconstituted into vesicles of varying lipid composition. Isotopic sodium uptake experiments were conducted with vesicles at zero membrane potential, using veratridine to activate channels and tetrodotoxin to block them. Under these conditions, channel-dependent uptake of isotopic sodium by the vesicles was observed, demonstrating that a certain fraction of the reconstituted protein was capable of mediating ion fluxes. In addition, vesicles untreated with veratridine showed significant background uptake of sodium; a considerable proportion of this flux was blocked by tetrodotoxin. Thus these measurements showed that a significant subpopulation of channels was present that could mediate ionic fluxes in the absence of activating toxins. The proportion of channels exhibiting this behavior was dependent on the lipid composition of the vesicles and the temperature at which the uptake was measured; furthermore, the effect of temperature was reversible. However, the phenomenon was not affected by the degree of purification of the protein used for reconstitution, and channels in resealed electroplax membrane fragments or reconstituted, solely into native eel lipids did not show this behavior. The kinetics of vesicular uptake through these spontaneously-opening channels was slow, and we attribute this behavior to a modification of sodium channel inactivation.  相似文献   
10.
Solubilisation of a Glutamate Binding Protein from Rat Brain   总被引:2,自引:2,他引:0  
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号