首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   16篇
  2013年   5篇
  2012年   3篇
  2011年   7篇
  2010年   11篇
  2009年   23篇
  2008年   17篇
  2007年   17篇
  2006年   16篇
  2005年   13篇
  2004年   10篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   9篇
  1999年   6篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
1.
Summary The antennal lobe of both sexes of the silk moth Bombyx mori contains 55–60 ventrally located antennal glomeruli; in addition, that of the male contains a dorsal macroglomerular complex (MGC). A group of identifiable glomeruli consisting of two lateral large glomeruli (LLG) and four medial small glomeruli (MSG) is present in both sexes, but the LLG are greatly enlarged in the female. A MGC is also present in the male gypsy moth Lymantria dispar and male giant silk moth Antheraea polyphemus. The MGC in all of these species is organized into 3–4 distinct levels of glomeruli. Antennal sensory fibers were stained by cobalt backfills in B. mori, A. polyphemus, and L. dispar. Most fibers stained from cut long hairs (sensilla trichodea) projected to MGC in males and LLG in both sexes of B. mori. The distribution of fibers in the MGC of B. mori was topographically biased in that a majority of fibers from anterior branches projected medially in MGC while most fibers from posterior branches projected laterally or anteriorly. Terminal arborizations of single fibers were each restricted to a single glomerular level of the MGC. Fibers projecting to the posterior antennal center were frequently stained in cut-hair and control preparations, apparently by uptake of cobalt through intact sensilla on flagellar branches.  相似文献   
2.
Synopsis Fish migration may be viewed as the product of two processes; the selection and tracking of optimal environmental conditions through time and space, and the use of predictive information about environmental structure to bias movements towards a goal. The establishment and maintenance of directional bias is based on the interaction of experience and instinct. The preoccupation of much fish orientation research with innate fixed patterns of behavior on one hand and hydrodynamics on the other has led us to underestimate the possibility that orientation is a flexible process relying on developmental sequences, calibration of the motor-sensory interaction based on experience and the learning of environmental pattern. Evidence illustrating how experience and learning may influence the direction of movement and how the goal is recognized is presented according to two general categories: (a) imprinting and early experience and (b), spatial learning, including the social transmission of migratory routes and directions. In the first category, the olfactory hypothesis of salmon homing is briefly reviewed and new data presented describing olfactory imprinting in Atlantic salmon,Salmo salar. In the second category, evidence is presented demonstrating the modifiability of sun-compass orientation and the ability of some fish species to learn the spatial distribution of landmarks. The role of social transmission in the migration of coral reef fishes is reviewed. The possible role of these learning phenomena in the formation of familiar area maps, route-based and location-based navigation and the critical distance factor is considered. The relationship between life history and the nature of learning in migratory orientation is discussed  相似文献   
3.
Summary Electroantennographic and single sensillum recordings were performed on male pine sawfly, Neodiprion sertifer, antennae. Responses to the sex pheromone component (2S, 3S, 7S)- 3,7-dimethyl-2-pentadecenyl (diprionyl) acetate (SSS:OAc), to the behavioral inhibitor (2S, 3R, 7R)-diprionyl acetate (SRR:OAc), to the six other enantiomers of diprionyl acetate, and to the biosynthetic precursor diprionol were recorded. Responses to trans-perillenal, a monoterpene identified in female gland extracts and to (2S, 3S, 7S)-diprionyl propionate (SSS:OPr), a field attractant for N. sertifer and some related sawfly species were also recorded.EAG recordings demonstrated a high antennal sensitivity to SSS:OAc and to SSS:OPr. A somewhat lower response was elicited by SRR:OAc.Single sensillum recordings revealed 8–12 different cells firing in each sensillum, corresponding to the number of cells observed in earlier morphological investigations. Out of these cells all, except one, responded to SSS:OAc and to SSS:OPr. No differences in the response to the two components could be observed. The largest amplitude cell in each sensillum was specifically tuned to the behavioral antagonist, SRR:OAc. The pheromone perception system encountered in male pine sawflies thus differs clearly from that observed in moths.Abbreviation EAG electroantennogram - OAc acetate - OPr propionate  相似文献   
4.
Synopsis Origins of the freshwater attractant(s) of migrating elvers of the American eel were investigated by assaying elvers' responses to rinses of plants, animals, and inanimate objects collected from a Rhode Island (U.S.A.) brook with a sizable elver run. Odor rinses were tested in a Y-maze at naturally occurring concentrations against both blank and brook water. Many items were attractive, several were repulsive, and some caused a reduction in elvers' rheotactic behavior, suggesting that elvers respond to a bouquet of odors. The odor of abundant decaying leaf detritus was highly attractive as were odors of the surfaces of aquatic plants, submerged stones, and migrating alewives. Conspecific odor was only weakly attractive. Because unattractive leaves became attractive when cultured with stream water, microorganisms responsible for detrital decomposition and present in/on most stream objects are thought to be the major source of the attractant(s). Decaying detritus and its associated microorganisms are abundant in most freshwater streams, where they often constitute the ecosystem's primary energy source; their odor could serve as an index of environmental suitability for migrating eels.  相似文献   
5.
The olfactory system of the Florida spiny lobster, Panulirus argus, has olfactory receptors that are excited by the purine nucleotides AMP, ADP, and ATP. These receptors reside on chemosensory neurons that are contained within aesthetasc sensilla on the lateral filaments of the antennules. Also associated with the lobster's olfactory system are ectonucleotidase activities that dephosphorylate excitatory nucleotides, resulting in the production of the nonstimulatory nucleoside adenosine. Our studies of the 5'-ectonucleotidase, ecto-ADPase, and ecto-ATPase activities of this olfactory system showed that each activity was characterized by Michaelis-Menten kinetics; Michaelis constants ranged from 6.9 to 33.5 microM, and maximum velocities ranged from 2.5 to 28.8 fmol/sensillum/s. Evidence that AMP dephosphorylation may serve as an inactivation process was shown by the close correlation between the kinetics of 5'-ectonucleotidase activity and the periodicity of olfactory sampling. Decreased magnesium ion concentration or increased calcium ion concentration resulted in increased ecto-ATPase activity; this activity was insensitive to vanadate ion. Ectonucleotidase activities may have multiple effects on the detection of exogenous nucleotides by a chemosensory system. These effects can be either direct, such as the conversion of an odorant to an inactive compound, or indirect, such as the conversion of an odorant to another compound that can activate or inhibit either receptors or enzymes associated with the system.  相似文献   
6.
7.
We describe the kinetics of odorant response in the maxillary palp of Drosophila, and show that the rate of recovery from odorant stimulation is affected by mutation of the rdgB (retinal degeneration B) gene. We use immunocytochemistry to confirm that the rdgB gene product is expressed in the maxillary palp. rdgB has recently been shown to encode a protein with Ca2+-binding sites and sequence similarity to rat brain phosphatidylinositol transfer protein; it is located near the rhabdomeric membranes in photoreceptor cells, where it has been suggested to play a role in membrane transport. The delay in recovery kinetics that we observe in olfactory tissue may reflect a defect in membrane restoration at the conclusion of the olfactory transduction cascade. The use of common molecules in the physiology of two olfactory organs, and in both visual and olfactory physiology, is discussed.Abbreviations EAG electroantennogram - EPG electropalpogram - ERG electroretinogram - norpA no receptor potential A - PBS phosphate buffered saline - rdgB retinal degeneration B - PI phosphatidylinositol  相似文献   
8.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   
9.
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, hGαq, with >80% identity to mammalian and arthropod Gαq sequences. In brain and olfactory organ, hGαq mRNA was expressed predominantly in neurons, including virtually all the neuronal cell body clusters of the brain. Gαq protein was also expressed broadly, appearing on western blots as a single band of 46 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that hGαq plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, the expression of a single hGαq mRNA species (6 kb) in the olfactory organ, and the localization of hGαq mRNA predominantly in the olfactory receptor neurons of the olfactory organ strongly suggest that one function of hGαq is to mediate olfactory transduction.  相似文献   
10.
Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood meal by recording electroantennograms (EAGs) of female mosquitoes at three time points (2 h, 48 h and 72 h) to 15 volatile kairomones of either human origin or documented to emanate from oviposition sites. The EAG-sensitivity was compared with that of females of similar age post eclosion. As is common practice in electrophysiological studies, the EAG recordings were obtained by repeated stimulation of the same antennal preparations. We introduce mixed linear modeling as an improved statistical analysis for electrophysiological data. Two hours after blood ingestion, olfactory sensitivity as quantified through EAG-recording increased significantly and selectively, i.e. for seven compounds, compared to unfed females of the same age. Such short-term electrophysiological sensitization in the olfactory system as a result of feeding has not been documented before for insects. Sensitization to six compounds persisted until 48 h or 72 h post-blood meal at one or more concentrations. Desensitization was observed at 48 and 72 h pbm in response to two and three kairomones, respectively. For several compounds, sensitization at the EAG-level corresponded with sensitization found previously in single sensillum studies on olfactory neurons in antennal sensilla trichodea of An. gambiae females. These effects are likely to reflect sensitization to oviposition cues, as eggs have matured 48–72 h pbm. Knowledge of changes in olfactory sensitivity to kairomones can be applied to increase trap catches of malaria mosquitoes that have taken a blood meal and need to locate oviposition sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号