首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有19条查询结果,搜索用时 218 毫秒
1.
A subclass of proteins with the SEA (sea urchin sperm protein, enterokinase, and agrin) domain fold exists as heterodimers generated by autoproteolytic cleavage within a characteristic G− 1S+ 1VVV sequence. Autoproteolysis occurs by a nucleophilic attack of the serine hydroxyl on the vicinal glycine carbonyl followed by an N → O acyl shift and hydrolysis of the resulting ester. The reaction has been suggested to be accelerated by the straining of the scissile peptide bond upon protein folding. In an accompanying article, we report the mechanism; in this article, we provide further key evidence and account for the energetics of coupled protein folding and autoproteolysis. Cleavage of the GPR116 domain and that of the MUC1 SEA domain occur with half-life (t½) values of 12 and 18 min, respectively, with lowering of the free energy of the activation barrier by ∼ 10 kcal mol− 1 compared with uncatalyzed hydrolysis. The free energies of unfolding of the GPR116 and MUC1 SEA domains were measured to ∼ 11 and ∼ 15 kcal mol− 1, respectively, but ∼ 7 kcal mol− 1 of conformational energy is partitioned as strain over the scissile peptide bond in the precursor to catalyze autoproteolysis by substrate destabilization. A straining energy of ∼ 7 kcal mol− 1 was measured by using both a pre-equilibrium model to analyze stability and cleavage kinetics data obtained with the GPR116 SEA domain destabilized by core mutations or urea addition, as well as the difference in thermodynamic stabilities of the MUC1 SEA precursor mutant S1098A (with a G− 1A+ 1VVV motif) and the wild-type protein. The results imply that cleavage by N → O acyl shift alone would proceed with a t½ of ∼ 2.3 years, which is too slow to be biochemically effective. A subsequent review of structural data on other self-cleaving proteins suggests that conformational strain of the scissile peptide bond may be a common mechanism of autoproteolysis.  相似文献   
2.
In plants, specialized enzymes are required to catalyze the release of ammonia from asparagine, which is the main nitrogen-relocation molecule in these organisms. In addition, K+-independent plant asparaginases are also active in splitting the aberrant isoaspartyl peptide bonds, which makes these proteins important for seed viability and germination. Here, we present the crystal structure of potassium-independent L-asparaginase from yellow lupine (LlA) and confirm the classification of this group of enzymes in the family of Ntn-hydrolases. The alpha- and beta-subunits that form the mature (alphabeta)2 enzyme arise from autoproteolytic cleavage of two copies of a precursor protein. In common with other Ntn-hydrolases, the (alphabeta) heterodimer has a sandwich-like fold with two beta-sheets flanked by two layers of alpha-helices (alphabetabetaalpha). The nucleophilic Thr193 residue, which is liberated in the autocatalytic event at the N terminus of subunit beta, is part of an active site that is similar to that observed in a homologous bacterial enzyme. An unusual sodium-binding loop of the bacterial protein, necessary for proper positioning of all components of the active site, shows strictly conserved conformation and metal coordination in the plant enzyme. A chloride anion complexed in the LlA structure marks the position of the alpha-carboxylate group of the L-aspartyl substrate/product moiety. Detailed analysis of the active site suggests why the plant enzyme hydrolyzes asparagine and its beta-peptides but is inactive towards substrates accepted by similar Ntn-hydrolases, such as taspase1, an enzyme implicated in some human leukemias. Structural comparisons of LlA and taspase1 provide interesting insights into the role of small inorganic ions in the latter enzyme.  相似文献   
3.
Glycosylasparaginase belongs to a family of N-terminal nucleophile hydrolases that autoproteolytically generate their mature enzymes from single-chain protein precursors. Previously, based on a precursor structure paused at pre-autoproteolysis stage by a reversible inhibitor (glycine), we proposed a mechanism of intramolecular autoproteolysis. A key structural feature, a highly strained conformation at the scissile peptide bond, had been identified and was hypothesized to be critical for driving autoproteolysis through an N-O acyl shift. To examine this “twist-and-break” hypothesis, we report here a 1. 9-Å-resolution structure of an autoproteolysis-active precursor (a T152C mutant) that is free of inhibitor or ligand and is poised to undergo autoproteolysis. The current crystallographic study has provided direct evidence for the natural conformation of the glycosylasparaginase autocatalytic site without influence from any inhibitor or ligand. This finding has confirmed our previous proposal that conformational strain is an intrinsic feature of an active precursor.  相似文献   
4.
In light of unrestricted use of first-generation penicillins, these antibiotics are now superseded by their semisynthetic counterparts for augmented antibiosis. Traditional penicillin chemistry involves the use of hazardous chemicals and harsh reaction conditions for the production of semisynthetic derivatives and, therefore, is being displaced by the biosynthetic platform using enzymatic transformations. Penicillin G acylase (PGA) is one of the most relevant and widely used biocatalysts for the industrial production of β-lactam semisynthetic antibiotics. Accordingly, considerable genetic and biochemical engineering strategies have been devoted towards PGA applications. This article provides a state-of-the-art review in recent biotechnological advances associated with PGA, particularly in the production technologies with an emphasis on using the Escherichia coli expression platform.  相似文献   
5.
β‐Aminopeptidases comprise a class of enzymes with functional and structural similarities. All members of the β‐aminopeptidases described to date were isolated from bacterial sources. Uniquely, they catalyze the hydrolysis of β3‐ and/or β2‐amino acid residues from amides and peptides that are otherwise considered proteolytically stable. Due to this unusual reactivity with β‐peptide substrates, β‐aminopeptidases have potential to be used as biocatalysts for β‐peptide synthesis and for the resolution of enantiomerically pure β‐amino acids from racemic substrate mixtures. β‐Aminopeptidases are formed from an inactive precursor by posttranslational autoproteolytic cleavage, exposing the catalytic nucleophile at the N‐terminus of the newly formed β‐polypeptide chain. Such an activation step is a characteristic trait of enzymes of the N‐terminal nucleophile (Ntn) hydrolase superfamily. However, classical Ntn hydrolases and β‐aminopeptidases differ by the fold of their catalytic cores and are hence likely to originate from distinct evolutionary ancestors. In this contribution, we review the existing literature on β‐aminopeptidases, including biochemical and functional studies, as well as structural investigations that recently allowed insights into the catalytic mechanisms of precursor processing and β‐peptide conversion.  相似文献   
6.
7.
The main function of lysosomal proteins is to degrade cellular macromolecules. We purified a novel lysosomal protein to homogeneity from bovine kidneys. By gene annotation, this protein is defined as a bovine phospholipase B‐like protein 1 (bPLBD1) and, to better understand its biological function, we solved its structure at 1.9 Å resolution. We showed that bPLBD1 has uniform noncomplex‐type N‐glycosylation and that it localized to the lysosome. The first step in lysosomal protein transport, the initiation of mannose‐6‐phosphorylation by a N‐acetylglucosamine‐1‐phosphotransferase, requires recognition of at least two distinct lysines on the protein surface. We identified candidate lysines by analyzing the structural and sequentially conserved N‐glycosylation sites and lysines in bPLBD1 and in the homologous mouse PLBD2. Our model suggests that N408 is the primarily phosphorylated glycan, and K358 a key residue for N‐acetylglucosamine‐1‐phosphotransferase recognition. Two other lysines, K334 and K342, provide the required second site for N‐acetylglucosamine‐1‐phosphotransferase recognition. bPLBD1 is an N‐terminal nucleophile (Ntn) hydrolase. By comparison with other Ntn‐hydrolases, we conclude that the acyl moiety of PLBD1 substrate must be small to fit the putative binding pocket, whereas the space for the rest of the substrate is a large open cleft. Finally, as all the known substrates of Ntn‐hydrolases have amide bonds, we suggest that bPLBD1 may be an amidase or peptidase instead of lipase, explaining the difficulty in finding a good substrate for any members of the PLBD family. Proteins 2014; 82:300–311. © 2013 Wiley Periodicals, Inc.  相似文献   
8.
Gamma glutamyl transferases (GGT) are highly conserved enzymes that occur from bacteria to humans. They remove terminal y-glutamyl residue from peptides and amides. GGTs play an important role in the homeostasis of glutathione (a major cellular antioxidant) and in the detoxification of xenobiotics in mammals. They are implicated in diseases like diabetes, inflammation, neurodegenerative diseases and cardiovascular diseases. The physiological role of GGTs in bacteria is still unclear. Nothing is known about the basis for the strong conservation of the enzyme across the living system. The review focuses on the enzyme's physiology, chemistry and structural properties of the enzyme with emphasis on the evolutionary relationships. The available data indicate that the members of the GGT family share common structural features but are functionally heterogenous.  相似文献   
9.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   
10.
Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号