首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  国内免费   2篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
In spite of abundant data on oligodendrocyte abnormalities in dysmyelinated jimpy brain, little is known about the axonal damage and the expression of neuronal genes. Recent findings indicate that Nogo-A, oligodendrocyte-myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) inhibit axonal growth by binding a common receptor, the Nogo-A receptor (NgR)-p75 complex. In order to evaluate neuronal modifications in the absence of myelin and in the presence of abnormal oligodendrocytes at different developmental stages, the expression of these inhibitory proteins and their receptors was investigated in jimpy mutant brain. Despite the decrease in oligodendrocyte number at P15 and P25 in jimpy, Nogo-A and OMgp mRNA levels are not significantly different compared with control, suggesting an overexpression of neuronal Nogo-A and OMgp in mutant. Double immunolabeling for Nogo-A and neurofilaments shows strong axonal staining of Nogo-A in jimpy and its down-regulation in oligodendrocytes. The current data raise questions about functions of Nogo-A other than neurite growth inhibition in the CNS. No significant changes in NgR mRNA levels were observed in jimpy, where the increase in p75 level can be correlated with the cell death of oligodendrocytes. In the paranodal region, the cell adhesion molecule neurofascin glial isoform NFN155 mRNA level is reduced by 40% whereas neuronal form NFN186 is up-regulated. These results may explain the failure of paranodal region organization, even with normal level of CASPR (paranodin) mRNA detected in jimpy brain.  相似文献   
2.
为检测Nogo A和srGAPs蛋白在NIH 3T3细胞上的表达,应用Western印迹的方法检测Nogo A蛋白的表达. 从NIH 3T3细胞抽提物中检测到约230 kD特异性的Nogo A反应条带;利用双重免疫细胞荧光化学标记法和激光共聚焦显微镜成像技术分别检测Nogo A与srGAPs或Rho蛋白在NIH 3T3细胞上的共表达状况,可观察到Nogo A与srGAPs共存于3T3细胞的细胞浆、突起和生长锥样结构上,亦可观察到Nogo A与Rho蛋白的共存.结果表明,NIH 3T3细胞中共表达Nogo A、srGAPs和Rho分子. 这为研究Nogo A与Rho信号转导途径间的关系奠定了基础.  相似文献   
3.
Nogo-A, an axonal growth inhibitory protein known to be mostly present in CNS myelin, was upregulated in retinal ganglion cells (RGCs) after optic nerve injury in adult mice. Nogo-A increased concomitantly with the endoplasmic reticulum stress (ER stress) marker C/EBP homologous protein (CHOP), but CHOP immunostaining and the apoptosis marker annexin V did not co-localize with Nogo-A in individual RGC cell bodies, suggesting that injury-induced Nogo-A upregulation is not involved in axotomy-induced cell death. Silencing Nogo-A with an adeno-associated virus serotype 2 containing a short hairpin RNA (AAV2.shRNA-Nogo-A) or Nogo-A gene ablation in knock-out (KO) animals had little effect on the lesion-induced cell stress or death. On the other hand, Nogo-A overexpression mediated by AAV2.Nogo-A exacerbated RGC cell death after injury. Strikingly, however, injury-induced sprouting of the cut axons and the expression of growth-associated molecules were markedly reduced by AAV2.shRNA-Nogo-A. The axonal growth in the optic nerve activated by the intraocular injection of the inflammatory molecule Pam3Cys tended to be lower in Nogo-A KO mice than in WT mice. Nogo-A overexpression in RGCs in vivo or in the neuronal cell line F11 in vitro promoted regeneration, demonstrating a positive, cell-autonomous role for neuronal Nogo-A in the modulation of axonal regeneration.  相似文献   
4.
Nogo-A is originally identified as an inhibitor of axon regeneration from the CNS myelin. Nogo-A is mainly expressed by oligodendrocytes, and also by some neuronal subpopulations, particularly in the developing nervous system. Although extensive studies have uncovered regulatory roles of Nogo-A in neurite outgrowth inhibition, precursor migration, neuronal homeostasis, plasticity and neurodegeneration, its cell-autonomous functions in neurons are largely uncharacterized. Here, we show that HIV-1 trans-activating-mediated amino-Nogo-A protein transduction into cultured primary cortical neurons achieves an almost complete neuroprotection against oxidative stress induced by exogenous hydrogen peroxide (H(2)O(2)). Endogenously expressed neuronal Nogo-A is significantly downregulated upon H(2)O(2) treatment. Furthermore, knockdown of Nogo-A results in more susceptibility to acute oxidative insults and markedly increases neuronal death. Interacting with peroxiredoxin 2 (Prdx2), amino-Nogo-A reduces reactive oxygen species (ROS) generation and extracellular signal-regulated kinase phosphorylation to exert neuroprotective effects. Structure-function mapping experiments reveal that, out of NiG-Δ20, a novel region comprising residues 290-562 of amino-Nogo-A is indispensable for preventing oxidative neuronal death. Moreover, mutagenesis analysis confirms that cysteine residues 424, 464 and 559 are involved in the inhibition of ROS generation and neuroprotective role of amino-Nogo-A. Our data suggest that neuronal Nogo-A might play a cell-autonomous role in improving neuronal survival against oxidative insult through interacting with Prdx2 and scavenging of ROS.  相似文献   
5.
目的:观察一氧化碳中毒后大鼠海马组织中Nogo-A蛋白动态表达情况,探讨Nogo-A蛋白在一氧化碳中毒后神经系统损伤中的作用与影响。方法:随机数字法将雄性SD大鼠30只分为正常对照组(NC组)、CO中毒组(CO组)、CO中毒后24小时组(CO-24h)、CO中毒后48小时组(CO-48h)、CO中毒后7天组(CO-7d),每组各6只。CO气体腹腔注射染毒法建立一氧化碳中毒模型。建模后不同时间点利用免疫组织化学染色(IHC)、蛋白质免疫印迹技术检测(WB)Nogo-A蛋白在海马组织中的表达情况并分析其变化规律。结果:IHC结果表明NC、CO组、CO-24h组、CO-48h组、CO-7d组中Nogo-A蛋白平均光密度值分别为0.0928±0.0038、0.01172±0.0042、0.1452±0.0056、0.1271±0.0057、0.1088±0.0055;WB结果提示一氧化碳中毒后海马组织中Nogo-A蛋白的表达较NC组增高,在24h时表达达到高峰(P0.05);24h后表达开始逐步下降,至染毒第7天时,海马组织中Nogo-A蛋白的表达明显下降,但仍高于NC组(P0.05)。结论:在本研究中,大鼠海马组织中Nogo-A蛋白表达的增高与一氧化碳中毒相关;Nogo-A蛋白表达在24h时表达达到高峰;24h后表达开始逐步下降。  相似文献   
6.
Context: Improved biomarkers would facilitate the diagnosis and treatment of autism spectrum disorders (ASD).

Objective: Our objective was to examine the levels of Nogo-A and glial fibrillary acidic protein (GFAP) in children with ASD.

Materials and methods: Serum concentrations of GFAP and Nogo-A were determined by enzyme-linked immunosorbent assay.

Results: In this preliminary study, we found that serum Nogo-A was not found significantly different between groups, while serum levels of GFAP were significantly lower in ASD than controls.

Discussion and conclusions: It will be of great interest to determine other potential causes of elevated serum levels of GFAP, and whether this elevation has any phenotypic effect.  相似文献   
7.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   
8.
目的:观察大鼠脊髓胸段(T8-T10)平面中少突胶质细胞在白质和灰质中分布和形态学差异。方法:应用免疫荧光组织化学方法,利用少突胶质细胞特异性标志物一抗大鼠Nogo-A分子单克隆抗体,观察大鼠脊髓胸段平面白质和灰质中少突胶质细胞分布和形态学差异。结果:Nogo—A免疫阳性标记主要集中在少突胶质细胞的胞体、突起及其形成的髓鞘。在冠状切面中,白质中的少突胶质细胞广泛分布,而灰质中少突胶质细胞主要分布于神经元的周围;白质中少突胶质细胞胞体较灰质中少突胶质细胞的胞体大,且白质中少突胶质细胞突起及形成的髓鞘结构较灰质中明显。在矢状切面中,白质中少突胶质细胞多成”串珠状”排列,而灰质中少突胶质细胞则紧贴神经元。在脊髓近端背根结结构中,可以观察到少突胶质细胞形成的轴突呈”蜂窝状”结构。结论:应用抗大鼠Nogo—A分子单克隆抗体的免疫荧光组织化学染色方法能够较好展示少突胶质细胞分布特点和形态学差异,与少突胶质细胞类别(束内细胞,卫星细胞)和功能特点相适应,为进一步研究生理和病理条件下,少突胶质细胞的机能奠定基础。  相似文献   
9.
《Biomarkers》2013,18(6-7):495-501
Abstract

Objective: To identify the early changes of serum neuroglobin and Nogo-A concentrations and the relations to traumatic brain injury (TBI) severity and prognosis.

Methods: Serum samples were obtained and analyzed from 34 patients with TBI within the first 96?h after injury. Comparative analysis combined with Glasgow Coma Scale (GCS) scores and the 6-month prognosis of these patients was performed.

Results: Significant correlations were found between peak serum neuroglobin and Nogo-A concentrations and a patient’s GCS score on admission (p?<?0.001). The mean peak serum neuroglobin and Nogo-A concentrations were both significantly higher in patients with an unfavorable outcome at 6 months after injury (p?<?0.05).

Conclusions: Serum neuroglobin and Nogo-A levels could be suggested as biomarkers for predicting TBI severity and prognosis.

Trial registration: ClinicalTrials.gov identifier: NCT02229643.  相似文献   
10.
The membrane protein Nogo-A inhibits neurite outgrowth and regeneration in the injured central nervous system, primarily because of its expression in oligodendrocytes. Hence, deletion of Nogo-A enhances regeneration following spinal cord injury. Yet, the effects of Nogo-A deletion on general behavior and cognition have not been explored. The possibility of potential novel functions of Nogo-A beyond growth inhibition is strongly suggested by the presence of subpopulations of neurons also expressing Nogo-A – not only during development but also in adulthood. We evaluated here Nogo-A −/− mice in a series of general basic behavioral assays as well as functional analyses related to brain regions with notable expression levels of Nogo-A. The SHIRPA protocol did not show any major basic behavioral changes in Nogo-A −/− mice. Anxiety-related behavior, pain sensitivity, startle reactivity, spatial learning, and associative learning also appeared indistinguishable between Nogo-A −/− and control Nogo-A+/+ mice. However, motor co-ordination and balance were enhanced in Nogo-A −/− mice. Spontaneous locomotor activity was also elevated in Nogo-A −/− mice, but this was specifically observed in the dark (active) phase of the circadian cycle. Enhanced locomotor reaction to systemic amphetamine in Nogo-A −/− mice further pointed to an altered dopaminergic tone in these mice. The present study is the first behavioral characterization of mice lacking Nogo-A and provides significant insights into the potential behavioral relevance of Nogo-A in the modulation of dopaminergic and motor functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号