首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目的 研究选择性雌激素受体调节剂克罗米芬在促进白质损伤模型动物大脑少突胶质前体细胞分化和髓鞘形成中的作用和对运动功能障碍的影响。方法 离体少突胶质前体细胞纯化培养;新生3 d小鼠连续缺氧(10%O2)7 d,模拟新生儿脑白质损伤;采用免疫荧光染色、运动协调功能检测等方法,观察克罗米芬对大脑皮质和胼胝体区域少突胶质细胞和髓鞘发育与运动功能的影响。结果 克罗米芬可促进纯化培养的少突胶质前体细胞分化为成熟少突胶质细胞,显著增加脑白质损伤模型小鼠脑组织2种髓鞘标志物——髓鞘碱性蛋白和髓鞘蛋白脂蛋白的表达,也显著增加成熟少突胶质细胞标志物腺瘤性结肠息肉病蛋白的表达;平衡杆实验证明克罗米芬治疗能够改善低氧导致的小鼠远期运动协调功能障碍。结论 克罗米芬能有效促进慢性缺氧诱导的白质损伤模型小鼠髓鞘形成和改善神经功能异常,为治疗脑白质损伤提供可能的临床药物。  相似文献   

2.
目的:用免疫组织化学及形态学等方法对原代培养大鼠脊神经元的形态及其纽蛋白(vinculin)分布进行研究。方法:实验采用原代培养的大鼠脊髓神经元,用细胞松驰素D(cytochalasinD)-丝状肌动蛋白解剖处理细胞后,用相差显微镜观察细胞形态,同时用单克隆抗体免疫组化方法显示细胞内纽蛋白的分布,结果:原代培养的脊髓神经元可见2-4个细长的突起,免疫组织化学方法显示纽蛋白姑神经元的胞体及突起均有分布,细胞松驰素D处理细胞后,神经元胞体变大,轮廓不清,突起增多,变矩,变粗,多分支且分支末端膨大,免疫组织化学方法显示纽蛋白在核周的人布明显增加,而且在突起内的分布则变得不连续,呈散在点状。结论:丝状肌动蛋白(filemental-actin,F-actin)的完整性对维持神经元的正常形态是必需的,神经元形态的变化与纽蛋白分布的变化相关。  相似文献   

3.
目的 用免疫组织化学及形态学等方法对原代培养大鼠脊髓神经元的形态及其纽蛋白 (vinculin)分布进行研究。方法 实验采用原代培养的大鼠脊髓神经元 ,用细胞松弛素 D(cytochalasin D) -丝状肌动蛋白解聚剂处理细胞后 ,用相差显微镜观察细胞形态 ,同时用单克隆抗体免疫组化方法显示细胞内纽蛋白的分布。结果 原代培养的脊髓神经元可见 2~4个细长的突起 ;免疫组织化学方法显示纽蛋白在神经元的胞体及突起均有分布。细胞松弛素 D处理细胞后 ,神经元胞体变大 ,轮廊不清 ,突起增多 ,变短、变粗 ,多分支且分支末端膨大 ;免疫组织化学方法显示纽蛋白在核周的分布明显增加 ,而在突起内的分布则变得不连续 ,呈散在点状。结论 丝状肌动蛋白 (filem ental- actin,F- actin)的完整性对维持神经元的正常形态是必需的 ;神经元形态的变化与纽蛋白分布的变化相关  相似文献   

4.
目的观察Nogo—p4是否通过与NgR结合的途径对大鼠脊髓来源神经干细胞分化形成双极形星形胶质细胞突起长度产生抑制。方法取4只出生24h内的Wistar大鼠,悬浮培养法培养大鼠脊髓来源的神经干细胞。把神经干细胞分为A、B、C、D四组,A组加入血清,B组加入血清和Nogo—p4,C组神经干细胞经RNA干扰沉默NgR基因后加入血清分化,D组神经干细胞经RNA干扰沉默NgR基因后加入血清和Nogo—p4。分化第7d,GFAP抗体标记星形胶质细胞,使用Image—ProPlus5.0软件测量双极形星形胶质细胞突起长度。结果神经干细胞分化第7d,四组均可形成双极形星形胶质细胞。B组中双极形星形胶质细胞的突起长度明显短于其它各组。A、C、D组中双极形星形胶质细胞的突起长度没有显著差异。结论Nogo—p4经与NgR结合途径显著抑制脊髓来源神经干细胞分化成的双极形星形胶质细胞的突起生长。  相似文献   

5.
Lv LQ  Lu YC 《生理科学进展》2006,37(2):145-148
少突胶质细胞在中枢神经系统中具有重要和广泛的生理功能。视神经损伤后,出现髓鞘脱失、少突胶质细胞死亡和髓鞘再生等病理改变,产生的髓鞘碎片能抑制视神经轴索再生。少突胶质细胞的抑制特性由特定的抑制分子介导,目前已鉴定的抑制分子主要有Nogo、髓鞘相关糖蛋白(myelin—associated glycoprotein,MAG)、少突胶质细胞髓鞘糖蛋白(oligodendrocyte myelin glycoprotein,OMgp)等,它们通过同一受体复合体传导抑制信号。阻滞抑制分子及其受体,或调整神经元的内在生长状态以克服抑制分子的抑制作用,可以促进视神经损伤后再生。本文就这方面的进展作一综述。  相似文献   

6.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

7.
以青年成年猫(1-3龄,2-2.5 kg)和老年猫(12龄,3-3.5kg)L6段脊髓白质为研究对象,用 神经丝蛋白(NF)免疫染色显示神经纤维,用改良的Holzer结晶紫染色显示所有胶质细胞并用成年动物Golgi 法显示其形态,用胶质纤维酸性蛋白(GFAP)免疫染色显示星形胶质细胞。光镜下对青年猫与老年猫腰髓白质 中神经纤维和胶质细胞进行形态学观察和定量研究。与青年猫相比,老年猫腰髓白质中的神经纤维密度显著下 降(P相似文献   

8.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

9.
亨廷顿蛋白相关蛋白1在成年大鼠脊髓中的分布   总被引:2,自引:0,他引:2  
目的观察亨廷顿蛋白相关蛋白1(huntingtin-associated protein 1, HAP1)在成年大鼠脊髓中的分布特点.方法采用免疫组织化学ABC法和免疫印迹(Western blotting)方法.结果免疫组织化学结果显示,在成年大鼠脊髓中,以背角灰质浅层(Rexed Ⅰ,Ⅱ层)的HAP1免疫反应性最强,阳性细胞最密集,免疫反应产物除分布在胞体外,还大量弥散分布于胞体间的神经毡内;背角深层有部分HAP1免疫反应阳性细胞呈散在分布,中央管周围灰质(Rexed X)内阳性胞体密度和免疫反应性强度仅次于后角浅层,而在脊髓腹角,偶见HAP1免疫反应阳性神经元.此外, Western blotting分析显示,脊髓背角内HAP1表达水平明显高于脊髓前角.结论 HAP1主要分布于大鼠脊髓背角灰质浅层和中央管周围灰质神经元内,提示其可能与痛觉信息一级传入和/或调控有关.  相似文献   

10.
韩熙  罗富成 《遗传》2023,(3):198-211
少突胶质细胞是中枢神经系统中形成髓鞘的高度特化的胶质细胞,由少突胶质前体细胞分化而来。长期以来,围绕少突胶质谱系细胞开展的研究主要集中在少突胶质细胞发育、髓鞘形成以及少突胶质谱系细胞在神经系统疾病中的作用等。新兴的单细胞转录组测序技术可以在转录组层面鉴定出特定类型细胞,为少突胶质谱系细胞的研究提供助力。本综述主要关注常见单细胞测序技术的发展以及它们在少突胶质细胞功能异质性和神经系统疾病研究中的应用,并对已取得的成果进行总结阐述,为单细胞测序技术在中枢神经系统疾病中少突胶质谱系细胞相关研究的应用和开发提供思路和参考。  相似文献   

11.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

12.
Spinal cord oligodendrocytes originate in the ventricular zone and subsequently migrate to white matter, stop, proliferate, and differentiate. Here we demonstrate a role for the chemokine CXCL1 and its receptor CXCR2 in patterning the developing spinal cord. Signaling through CXCR2, CXCL1 inhibited oligodendrocyte precursor migration. The migrational arrest was rapid, reversible, concentration dependent, and reflected enhanced cell/substrate interactions. White matter expression of CXCL1 was temporo-spatially regulated. Developing CXCR2 null spinal cords contained reduced oligodendrocytes, abnormally concentrated at the periphery. In slice preparations, CXCL1 inhibited embryonic oligodendrocyte precursor migration, and widespread dispersal of postnatal precursors occurred in the absence of CXCR2 signaling. These data suggest that population of presumptive white matter by oligodendrocyte precursors is dependent on localized expression of CXCL1.  相似文献   

13.
Higher vertebrate CNS myelin and oligodendrocytes in vitro contain membrane-bound surface proteins of 35 and 250 kDa with marked inhibitory properties for neurite growth and for fibroblast spreading. The inhibitory activity is neutralized by monoclonal antibody IN-1, which binds to the inhibitory proteins. IN-1 also neutralizes the nonpermissive substrate properties of adult rat optic nerve explants and spinal cord white matter in vitro, thus suggesting a crucial involvement of these inhibitors in the nonpermissive nature of the adult CNS of higher vertebrates. We have determined time of appearance and distribution of the IN-1-sensitive inhibitory activity in the rat. In the optic nerve, inhibitors appear after the period of axonal growth and before myelination. A similar schedule was found for the spinal cord and for the cerebellum. No IN-1-sensitive inhibitory activity was found outside the CNS or in oligodendrocyte-free regions of the CNS. Where investigated, the distribution of inhibitory oligodendrocytes and of IN-1-sensitive inhibitory activity correlated well. Our data suggest that IN-1-sensitive inhibitory activity in vivo might be an oligodendrocyte-specific property.  相似文献   

14.
We prepared a monoclonal antibody to microtubule-associated protein 1 (MAP 1), one of the two major high molecular weight MAP found in microtubules isolated from brain tissue. We found that MAP 1 can be resolved by SDS PAGE into three electrophoretic bands, which we have designated MAP 1A, MAP 1B, and MAP 1C in order of increasing electrophoretic mobility. Our antibody recognized exclusively MAP 1A, the most abundant and largest MAP 1 polypeptide. To determine the distribution of MAP 1A in nervous system tissues and cells, we examined tissue sections from rat brain and spinal cord, as well as primary cultures of newborn rat brain by immunofluorescence microscopy. Anti-MAP 1A stained white matter and gray matter regions, while a polyclonal anti-MAP 2 antibody previously prepared in this laboratory stained only gray matter. This confirmed our earlier biochemical results, which indicated that MAP 1 is more uniformly distributed in brain tissue than MAP 2 (Vallee, R.B., 1982, J. Cell Biol., 92:435-442). To determine the identity of cells and cellular processes immunoreactive with anti-MAP 1A, we examined a variety of brain and spinal cord regions. Fibrous staining of white matter by anti-MAP 1A was generally observed. This was due in part to immunoreactivity of axons, as judged by examination of axonal fiber tracts in the cerebral cortex and of large myelinated axons in the spinal cord and in spinal nerve roots. Cells with the morphology of oligodendrocytes were brightly labeled in white matter. Intense staining of Purkinje cell dendrites in the cerebellar cortex and of the apical dendrites of pyramidal cells in the cerebral cortex was observed. By double-labeling with antibodies to MAP 1A and MAP 2, the presence of both MAP in identical dendrites and neuronal perikarya was found. In primary brain cell cultures anti-MAP 2 stained predominantly cells of neuronal morphology. In contrast, anti-MAP 1A stained nearly all cells. Included among these were neurons, oligodendrocytes and astrocytes as determined by double-labeling with anti-MAP 1A in combination with antibody to MAP 2, myelin basic protein or glial fibrillary acidic protein, respectively. These results indicate that in contrast to MAP 2, which is specifically enriched in dendrites and perikarya of neurons, MAP 1A is widely distributed in the nervous system.  相似文献   

15.
It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.  相似文献   

16.
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured in selected regions of the cervical, thoracic, and lumbar spinal cord of untreated rabbits and, following intrathecal injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), in the thoracolumbar cord in rats using a sheep antiserum raised against tyrosine0 calcitonin gene-related peptide28-37. In the cervical, thoracic, and lumbar segments of the rabbit spinal cord, CGRP-LI levels were 15-50-fold higher in the dorsal than in the ventral grey region in the same segment. The only segmental variation in CGRP-LI levels was in the dorsal white region, where levels in the thoracic cord were lower than those in cervical or lumbar segments. Within individual spinal segments, the pattern of distribution of CGRP-LI in the rabbit spinal cord was analogous to that in other species previously examined, including rat, human, and cat spinal cord. Intrathecal injection of 5,7-DHT, which caused 85-91% depletion of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid from the thoracolumbar ventral spinal cord, did not affect choline acetyltransferase activity, which is colocalized with CGRP in motoneurones in this spinal cord region. In contrast, intrathecal 5,7-DHT produced a threefold increase in CGRP-LI in the ventral thoracolumbar cord, suggesting that spinal motoneurones selectively increase production of CGRP 10 days after neurotoxin-induced denervation of bulbospinal raphe neuronal input.  相似文献   

17.
The cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients contains a 17 kDa glycoproteic factor with gliotoxic properties in vitro. In order to study the physiopathological role of this gliotoxic factor in vivo, we have injected a partially purified preparation and appropriate controls in rat CSF and investigated whether it induces cell death in the rat central nervous system (CNS), 10 days and 3 months after injection. We used the TUNEL assay in association with specific immunohistochemistry to characterize dying cells in the gliotoxic factor- treated rat CNS. At 10 days post-injection, TUNEL-positive cells were observed in the whole rat CNS. They were particularly numerous in the choroid plexus, ependymal epithelium, cerebral white matter, cerebral vascular endothelium, arachnoid spaces and less frequent in the gray matter of brain and spinal cord. The predominant type of TUNEL-positive cells observed at 10 days post-injection was astrocytes, in white matter, gray matter, occasionnally around damaged endothelial cells in periventricular and subpial spaces. Other TUNEL-positive cells were identified as oligodendrocytes by an oligodendrocyte specific RIP immunostaining, at 10 days post-treatment with the gliotoxic factor. Interestingly, demyelination and death of oligodendrocytes were more important 3 months post-injection: TUNEL-RIP positive oligodendrocytes were generally associated with multifocal demyelinating areas. Clearly, the 17 kDa gliotoxic factor injection in rat CSF triggers demyelination and may be used as a new animal model for MS. Also, our results suggest a new possible scenario for MS pathogenesis: death of oligodendrocytes and astrocytes, stimulated by the MS gliotoxic factor causes the breakdown of the blood-brain barrier (BBB) and the demyelinating cascade.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号