首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  2017年   1篇
  2012年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1985年   2篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
In order to study the biochemical changes associated with the cell body response to axonal crush injury, two systems, hypoglossal nucleus and spinal cord ventral horn, were used. The time intervals chosen were 7, 14, and 28 days after unilateral crushing of the right hypoglossal nerve and cervicothoracic nerves of the rabbit. Non-crushed, contralateral nerves were used as controls. Three groups of enzyme activities were tested: (a) phospholipase A2, acyl CoA:2-acyl-sn-glycero-3-phosphocholine acyltransferase, and choline phosphotransferase, as indicators of phospholipid degradation and biosynthesis; (b) seven hydrolases, namely, beta-D-glucuronidase, beta-N-acetyl-D-hexosaminidase, arylsulfatase A, galactosylceramidase, GM1-ganglioside beta-galactosidase, and acid RNase, as indicators of lysosomal activity; and (c) free and inhibitor-bound alkaline RNase, as an index of RNA metabolism. Changes could be grouped into three distinct patterns. Compared to contralateral control, choline phosphotransferase showed a slight increase, whereas phospholipase A2 and most lysosomal hydrolases showed a significant increase of activity, especially evident in the ventral spinal cord neurons 14-28 days after crushing. These changes correlate with known increases of membrane and organelle numbers, including lysosomes, in motor and sensory neurons during peripheral regeneration. In contrast, free and acid alkaline RNase activity significantly decreased in the injured sides compared to the controls. This change can probably be correlated with a stabilization of RNAs needed for increased protein synthesis. No changes in total alkaline RNase and acyltransferase activities in either regeneration model were observed.  相似文献   
2.
Cellular properties and modulation of the identified neurons of the posterior cardiac plate-pyloric system in the stomatogastric ganglion of a stomatopod, Squilla oratoria, were studied electrophysiologically. Each class of neurons involved in the cyclic bursting activity was able to trigger an endogenous, slow depolarizing potential (termed a driver potential) which sustained bursting. Endogenous oscillatory properties were demonstrated by the phase reset behavior in response to brief stimuli during ongoing rhythm. The driver potential was produced by membrane voltage-dependent activation and terminated by an active repolarization. Striking enhancement of bursting properties of all the cell types was induced by synaptic activation via extrinsic nerves, seen as increases in amplitude or duration of driver potentials, spiking rate during a burst, and bursting rate. The motor pattern produced under the influence of extrinsic modulatory inputs continued for a long time, relative to that in the absence of activation of modulatory inputs. Voltage-dependent conductance mechanisms underlying postinhibitory rebound and driver potential responses were modified by inputs. It is concluded that endogenous cellular properties, as well as synaptic circuitry and extrinsic inputs, contribute to generation of the rhythmic motor pattern, and that a motor system and its component neurons have been highly conserved during evolution between stomatopods and decapods.Abbreviations AB anterior burster neuron - CoG commissural ganglion - CPG central pattern generator - lvn lateral ventricular nerve - OG oesophageal ganglion - pcp posterior cardiac plate - PCP pcp constrictor neuron - PD pyloric dilator neuron - PY pyloric constrictor neuron - son superior oesophageal nerve - STG stomatogastric ganglion - stn stomatogastric nerve  相似文献   
3.
The prey capture phase of feeding behavior in the pteropod mollusc Clione limacina consists of an explosive extrusion of buccal cones, specialized structures which are used to catch the prey, and acceleration of swimming with frequent turning and looping produced by tail bend. A system of neurons which control different components of prey capture behavior in Clione has been identified in the cerebral ganglia. Cerebral B and L neurons produce retraction of buccal cones and tightening of the lips over them — their spontaneous spike activities maintain buccal cones in the withdrawn position. Cerebral A neurons inhibit B and L cells and produce opening of the lips and extrusion of buccal cones. A pair of cerebral interneurons C-BM activates cerebral A neurons and synchronously initiates the feeding motor program in the buccal ganglia. Cerebral T neurons initiate acceleration of swimming and produce tail bending which underlies turning and looping during the prey capture. Both tactile and chemical inputs from the prey produce activation of cerebral A and T neurons. This reaction appears to be specific, since objects other than alive Limacina or Limacina juice do not initiate activities of A and T neurons.  相似文献   
4.
Aging is associated with a variety of pathologies, including motor dysfunctions and reductions in sexual behavior. In male rats, declines in sexual behavior during the aging process may be caused in part by the loss of the lumbar spinal cord motoneurons that innervate the penile musculature. Alternatively, declining sexual behavior may be caused by the precipitous reductions in circulating testosterone that occur during aging. In this paper, we report two experiments examining these issues. In Experiment 1, we counted motoneurons in the lumbar motor nuclei and measured several androgen-sensitive morphological properties of the penile muscles and their innervating motoneurons at several time points during the aging process. Motoneuron number in the lumbar nuclei did not change over time, even with very advanced age. In contrast, the penile muscles and their innervating motoneurons underwent profound atrophy, with muscle weight and motoneuron dendritic length declining to less than 50% of young adult levels. In Experiment 2, we treated aged animals with exogenous testosterone, and then examined their penile neuromuscular systems for morphological changes. Testosterone treatment, both acute and chronic, completely reversed age-related declines in the weight of the penile muscles and in the soma size and dendritic length of their innervating motoneurons. Together, these data suggest that reductions in male sexual behavior during the aging process are caused primarily by declines in testosterone levels rather than motoneuron loss. Furthermore, they raise the possibility that testosterone treatment could play an important role in maintaining neuronal connectivity in the aging body.  相似文献   
5.
Although the neuronal circuits that generate leech movements have been studied for over 30 years, the list of interneurons (INs) in these circuits remains incomplete. Previous studies showed that some motor neurons (MNs) are electrically coupled to swim-related INs, e.g., rectifying junctions connect IN 28 to MN DI-1 (dorsal inhibitor), so we searched for additional neurons in these behavioral circuits by co-injecting Neurobiotin and Alexa Fluor 488 into segmental MNs DI–1, VI–2, DE–3 and VE–4. The high molecular weight Alexa dye is confined to the injected cell, whereas the smaller Neurobiotin molecules diffuse through gap junctions to reveal electrical coupling. We found that MNs were each dye-coupled to approximately 25 neurons, about half of which are likely to be INs. We also found that (1) dye-coupling was reliably correlated with physiologically confirmed electrical connections, (2) dye-coupling is unidirectional between MNs that are linked by rectifying connections, and (3) there are novel electrical connections between excitatory and inhibitory MNs, e.g. between excitatory MN VE-4 and inhibitory MN DI-1. The INs found in this study provide a pool of novel candidate neurons for future studies of behavioral circuits, including those underlying swimming, crawling, shortening, and bending movements.  相似文献   
6.
7.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.  相似文献   
8.
These data describe improved modulation of discharge rates (rate coding) of first dorsal interosseous motor units throughout the acquisition of a complex force-matching skill involving isometric index finger abduction. In each of 15 consecutive trials, subjects attempted to match their force to a trajectory consisting of the sum of two sine waves (0.15 and 0.5 Hz) and random oscillations (overall mean force level ˜20% MVC). Reductions in root-mean-square (RMS) error of each subject’s force relative to the trajectory indicated substantial improvements in force-matching ability (F=33.8, p<0.001). With the acquisition of this new skill, there was increased amplitude modulation of muscular force near both dominant frequencies of the force-matching trajectory (F=10.6, p=0.008). The standard deviation and coefficient of variation of motor unit inter-spike intervals both decreased with improved performance indicating a general reduction in the amplitude of firing rate modulations (SD: F=18.69, p=0.001; CV: F=43.6, p<0.001). After skill acquisition, there was decreased firing rate modulation outside of the two dominant frequencies and increased amplitude of firing rate modulation at the higher of the two dominant frequencies (0.5 Hz, F=8.23, p=0.015). These findings indicate that improved precision of rate coding was a contributor to the acquisition of the new force-matching task. That the change in rate coding was frequency dependent suggests that factors other than frequency coding may contribute to the improved force matching at 0.15 Hz.  相似文献   
9.
10.
Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号