首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
Recent work indicated that co-activity of different motoneurons (MNs) in the leech can be regulated through a network that is centered on a pair of nonspiking (NS) neurons. Here, we investigate whether this effect generalizes to different types of MNs that display differential co-activity patterns in different motor behaviors: the dorsal longitudinal excitors DE-3 and the dorsal and ventral excitors MN-L. The data indicates that both motoneurons are coupled to the NS neurons through rectifying junctions that are activated when the motoneuron membrane potential becomes more negative than that of the NS, and that they exert an inhibitory synaptic potential on NS via a polysynaptic pathway. In addition, DE-3 and MN-L are linked by junctions that allow mutual excitation but the transmission of excitatory signals from MN-L to DE-3 depended on NS membrane potential. The results support the view that NS neurons can play a central role in orchestrating the co-activity of MNs during motor behaviors.  相似文献   

2.
During development, many embryos show electrical coupling among neurons that is spatially and temporally regulated. For example, in vertebrate embryos extensive dye coupling is seen during the period of circuit formation, suggesting that electrical connections could prefigure circuits, but it has been difficult to identify which neuronal types are coupled. We have used the leech Hirudo medicinalis to follow the development of electrical connections within the circuit that produces local bending. This circuit consists of three layers of neurons: four mechanosensory neurons (P cells), 17 identified interneurons, and approximately 24 excitatory and inhibitory motor neurons. These neurons can be identified in embryos, and we followed the spatial and temporal dynamics as specific connections developed. Injecting Neurobiotin into identified cells of the circuit revealed that electrical connections were established within this circuit in a precise manner from the beginning. Connections first appeared between motor neurons; mechanosensory neurons and interneurons started to connect at least a day later. This timing correlates with the development of behaviors, so the pattern of emerging connectivity could explain the appearance first of spontaneous behaviors (driven by a electrically coupled motor network) and then of evoked behaviors (when sensory neurons and interneurons are added to the circuit).  相似文献   

3.
Summary In crustacean walking legs, the coxo-basipodite chordotonal organ (CB) composed of about 50 sensory cells, evokes a resistance reflex in the levator (Lev) and depressor (Dep) muscles responsible for the movements of the coxo-basipodite joint where it is located. Mechanical stimulation of the CB strand and electrical stimulation of its sensory nerve have been performed along with systematic intracellular recordings from CB terminals (CB T) and levator (Lev) or depressor (Dep) motoneurons (MNs) in order to study their connections. Measurements of conduction times in the CB nerve demonstrated different pools of sensory fibres, the fastest of which reach the ganglion in 2.5 ms. During imposed movements to the CB strand, intracellularly recorded Lev or Dep MN display EPSPs that are correlated to spikes in the CB nerve, their delays are incompatible with a polysynaptic pathway. Systematic stimulation of the CB nerve demonstrates that about 4 to 8 CB fibres are connected with each Lev or Dep MN. Classical tests for monosynaptic connections indicate that EPSPs occurring between 3 ms and 6 ms correspond mainly to monosynaptic connections with CB T, whereas IPSPs (the latencies of which are above 12 ms) are polysynaptic. In spite of the high selectivity of the CB T onto MNs, eight simultaneous intracellular recordings of coupled CB T and MN (out of more than 300 MNs penetrated) have allowed a direct measurement of synaptic delays (less than 1 ms). The functional significance of these results is discussed in relation to the proprioceptive control of locomotor movements.Abbreviations CB Coxo-basipodite chordotonal organ - CB n CB sensory nerve - CB T CB sensory terminal - Dep depressor - Lev levator - MN motoneuron  相似文献   

4.
The mouse primary visual cortex (V1) has emerged as a classical system to study neural circuit mechanisms underlying visual function and plasticity. A variety of efferent-afferent neuronal connections exists within the V1 and between the V1 and higher visual cortical areas or thalamic nuclei, indicating that the V1 system is more than a mere receiver in information processing. Sensory representations in the V1 are dynamically correlated with neural activity oscillations that are distributed across different cortical layers in an input-dependent manner. Circuits consisting of excitatory pyramidal cells (PCs) and inhibitory interneurons (INs) are the basis for generating neural oscillations. In general, INs are clustered with their adjacent PCs to form specific microcircuits that gate or filter the neural information. The interaction between these two cell populations has to be coordinated within a local circuit in order to preserve neural coding schemes and maintain excitation–inhibition (E–I) balance. Phasic alternations of the E–I balance can dynamically regulate temporal rhythms of neural oscillation. Accumulating experimental evidence suggests that the two major sub-types of INs, parvalbumin-expressing (PV+) cells and somatostatin-expressing (SOM+) INs, are active in controlling slow and fast oscillations, respectively, in the mouse V1. The review summarizes recent experimental findings on elucidating cellular or circuitry mechanisms for the generation of neural oscillations with distinct rhythms in either developing or matured mouse V1, mainly focusing on visual relaying circuits and distinct local inhibitory circuits.  相似文献   

5.
The output of a neuronal network results generally from both the properties of the component neurons and their synaptic relationships. This article aims at synthesizing various results obtained on the neural network generating locomotion in vitro. In the preparation used, consisting of the last three thoracic ganglia (3–5) along with motor nerves from the 5th leg ganglion to the promotor, remotor, levator and depressor muscles, motor nerve recordings generally revealed only tonic activity in several different motoneurons (MNs). However, rhythmic activity can be obtained by the use of cholinergic agents such as the oxotremorine (Oxo) superfused in the bath (5 × 10−5 M). If Oxo is pressure-ejected locally in the ganglion, it is possible, depending upon the locus where the drug is applied, to elicit a rhythmic activity restricted to a group of antagonistic MNs. To analyze how cholinergic agents are able to induce such rhythmic activity, very small volumes of drug (50–200 pl), were applied close to the recording electrode. Two types of depolarizing response occurred: a fast large amplitude depolarization (5–20 mV) and a long lasting (10 s to several minutes) low amplitude depolarization (1–3 mV). These responses persisted in the presence of TTX and Co2+. The transient initial depolarization is a mixed nicotinic and muscarinic voltage-independent response during which the input resistance decreases by 20 to 40%. In contrast, the long lasting component is voltage-dependent, exclusively muscarinic and associated to a 5–10% increase of input resistance due to the closing of a K+ conductance that is active at the resting Vm, and totally suppressed at holding potentials below −70 mV. More generally, K+ currents activated at resting potential are responsible for membrane potential stability. The injection of TEA, a blocker of the K+ currents, through the recording electrode is able to unmask plateaus above a threshold depolarization. These plateaus are TTX-sensitive but persist in the presence of Ca2+ channel blockers. Moreover, in 10% of TEA-filled MNs a spontaneous pacemaker activity was revealed. The organization of the locomotor network is also based upon connections between MNs and INs. Within a MN pool, connections are only loosely established, appearing to consist mainly of electrical coupling. Inhibitory synaptic connections between MNs of opposite pools are mediated by chloride channels. However, the neurotransmitter involved could be either GABA or glutamate. Therefore, at the level of a given joint, a basic rhythm occurs due to both motoneuronal membrane properties and motoneuronal connectivity. However, the coordination of all MNs of an entire leg during fictive walking activity requires the involvement of INs. Based upon these data, we propose a two-stage model of the locomotor network organization: a joint motoneuronal level and a whole leg interneuronal level.  相似文献   

6.
In mammalian spinal motoneurons (MNs), the slow component of the afterhyperpolarization (AHP) that follows the spike of each action potential is a major but not the sole determinant of the cells' firing rate. In this brief historical review, we emphasize four points about the AHP-firing rate relation. (1) There is a relatively sparse literature across vertebrates that directly addresses this topic. (2) After the advent of intracellular recording in the early 1950s, there was evidence from mammals to the contrary of an idea that subsequently became prevalent: that the high-firing rates attainable by spinal interneurons (INs) and low-threshold MNs was attributable to their small AHP at rheobase. (3) Further work is needed to determine whether our present findings on the AHP-firing rate relation of turtle cells generalize to the spinal neurons of other vertebrate species. (4) Relevant to point 3, substantial in vivo and in vitro work is potentially available in raw data used in reports on several mammalian and non-mammalian vertebrates. In summary, the factors in addition to the slow AHP that help determine spinal INs and MN firing rate deserve further evaluation across vertebrates, with relevant data already potentially available in several laboratories.  相似文献   

7.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

8.
In the fly, visually guided course control is accomplished by a set of 60 large-field motion-sensitive neurons in each brain hemisphere. These neurons have been shown to receive retinotopic motion information from local motion detectors on their dendrites. In addition, recent experiments revealed extensive coupling between the large-field neurons through electrical synapses. These two processes together give rise to their broad and elaborate receptive fields significantly surpassing the extent of their dendritic fields. Here, we demonstrate that the electrical connections between different large-field neurons can be visualized using Neurobiotin dye injection into a single one of them. When combined with a fluorescent dye which does not cross electrical synapses, the injected cell can be identified unambiguously. The Neurobiotin staining corroborates the electrical coupling postulated amongst the cells of the vertical system (VS-cells) and between cells of the horizontal system (HS-cells and CH-cells). In addition, connections between some cells are revealed that have so far not been considered as electrically coupled.  相似文献   

9.
10.
1. Intersegmental interneurons (INs) that participate in the larval bending reflex and the pupal gin trap closure reflex were identified in the isolated ventral nerve cord of Manduca sexta. INs 305, 504, and 703 show qualitatively different responses in the pupa than in the larva to electrical stimulation of sensory neurons that are retained during the larval-pupal transition to serve both reflexes. Action potentials produced by current injected into the 3 interneurons excite motor neurons that are directly involved in the larval and pupal reflexes. The excitation of the motor neurons is not associated with EPSPs at a fixed latency following action potentials in the interneurons, and thus there do not seem to be direct synaptic connections between the interneurons and the motor neurons. 2. IN 305 (Fig. 2) has a lateral soma, processes in most of the dorsal neuropil ipsilateral to the soma, and a crossing neurite that gives rise to a single contralateral descending axon. IN 305 is excited by stimulation of the sensory nerve ipsilateral to its soma in the larva and the pupa. Stimulation of the sensory nerve contralateral to its soma produces an inhibitory response in the larva, but a mixed excitatory/inhibitory response to the identical stimulus in the pupa. 3. IN 504 (Fig. 3) has a lateral soma, processes throughout most of the neuropil ipsilateral to the soma, and a crossing neurite that bifurcates to give rise to a process extending to the caudal limit of the neuropil and an ascending axon. IN 504 is excited by stimulation of the sensory nerve ipsilateral to its soma in both larvae and pupae, while the response to stimulation of the sensory nerve contralateral to its soma is inhibitory in the larva but mixed (excitatory/inhibitory) in the pupa. 4. IN 703 has a large antero-lateral soma, a neurite that extends across to the contralateral side giving rise to processes located primarily dorsally in both ipsilateral and contralateral neuropils, and two axons that ascend and descend in the connectives contralateral to the soma (Fig. 4). IN 703 responds to stimulation of the sensory nerves on either side of the ganglion, but the form of the response changes during the larval-pupal transition. In the larva, the response consists of very phasic (0-2 spikes) excitation, but in the pupa there is a prolonged excitation that greatly outlasts the stimulus (Fig. 6).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The present model of the motoneuronal (MN) pool – muscle complex (MNPMC) is deterministic and designed for steady isometric muscle activation. Time-dependent quantities are treated as time-averages. The character of the model is continuous in the sense that the motor unit (MU) population is described by a continuous density function. In contrast to most already published models, the wiring (synaptic weight) between the input fibers to the MNPMC and the MNs (about which no detailed data are known) is deduced, whereas the input–force relation is given. As suggested by experimental data, this relation is assumed to be linear during MU recruitment, but the model allows other, nonlinear relations. The input to the MN pool is defined as the number of action potentials per second in all input fibers, and the excitatory postsynaptic potential (EPSP) conductance in MNs evoked by the input is assumed to be proportional to the input. A single compartment model with a homogeneous membrane is used for a MN. The MNs start firing after passing a constant voltage threshold. The synaptic current–frequency relation is described by a linear function and the frequency–force transformation of a MU by an exponential function. The sum of the MU contraction forces is the muscle force, and the activation of the MUs obeys the size principle. The model parameters were determined a priori, i.e., the model was not used for their estimation. The analysis of the model reveals special features of the activation curve which we define as the relation between the input normalized by the threshold input of the MN pool and the force normalized by the maximal muscle force. This curve for any muscle turned out to be completely determined by the activation factor, the slope of the linear part of the activation curve (during MU recruitment). This factor determines quantitatively the relation between MU recruitment and rate modulation. This property of the model (the only known model with this property) allows a quantification of the recruitment gain (Kernell and Hultborn 1990). The interest of the activation factor is illustrated using two human muscles, namely the first dorsal interosseus muscle, a small muscle with a relatively small force at the end of recruitment, and the medial gastrocnemius muscle, a strong muscle with a relatively large force at the end of recruitment. It is concluded that the present model allows us to reproduce the main features of muscle activation in the steady state. Its analytical character facilitates a deeper understanding of these features. Received: 24 November 1997 / Accepted in revised form: 30 November 1998  相似文献   

12.
The isolated brachial spinal cord of the mudpuppy is useful for studies of neural networks underlying forelimb locomotion, but information about its anatomy is scarce. We addressed this issue by combining retrograde labeling with fluorescent tracers and confocal microscopy. Remarkably, the central region of gray matter was aneural and contained only a tenuous meshwork of glial fibers and large extracellular spaces. Somata of motoneurons (MNs) and interneurons (INs), labeled retrogradely from ventral roots or axons in the ventro-lateral funiculus, respectively, were confined within a gray neuropil layer abutting the white matter borders, while their dendrites projected widely throughout the white matter. A considerable fraction of labeled INs was found contralaterally with axons crossing beneath a thick layer of ependyma surrounding the central canal. Dorsal roots (DRs) produced dense presynaptic arbors within a restricted dorsal region containing afferent terminations, within which dorsally directed MN and IN dendrites mingled with dense collections of synaptic boutons. Our data suggest that a major fraction of synaptic interactions takes place within the white matter. This study provides a detailed foundation for electrophysiological experiments aimed at elucidating the neural circuits involved in locomotor pattern generation.  相似文献   

13.
The structure of a new cell type, termed the medullary neuron (MN) because of its intimate association with the rostral migratory stream (RMS) in the bulbar core, is described in the adult rat olfactory bulb. The MN is a triangular or polygonal interneuron whose soma lies between the cellular clusters of the RMS or, less frequently, among the neuron progenitors therein. MNs are easily distinguished from adjacent cells by their large size and differentiated structure. Two MN subtypes have been categorized by the Golgi technique: spiny pyramidal neurons and aspiny neurons. Both MN subtypes bear a large dendritic field impinged upon by axons in the core bulbar white matter. A set of collaterals from the adjacent axons appears to terminate on the MN dendrites. The MN axon passes in close apposition to adjacent neuron progenitors in the RMS. MNs are immunoreactive with antisera raised against gamma-aminobutyric acid and glutamate decarboxylase 65/67. Electron-microscopic observations confirm that MNs correspond to fully differentiated, mature neurons. MNs seem to be highly conserved among macrosmatic species as they occur in Nissl-stained brain sections from mouse, guinea pig, and hedgehog. Although the functional role of MNs remains to be determined, we suggest that MNs represent a cellular interface between endogenous olfactory activity and the differentiation of new neurons generated during adulthood.  相似文献   

14.
Adaptation as a memory model appears, at the cellular level, as an increase in the resistivity of neurons to fatigue under the influence of repetitive natural training stimulation. Selective induction of adaptational changes in separate compartments of one and the same neuron can also serve as an important instrument for identification of the roles of these compartments in the integrative function of the individual neuron. Mauthner neurons (MNs) of fishes (the goldfish in particular) possess a clearly differentiated soma and two dendrites, lateral and ventral ones. The soma and lateral dendrite of each MN receive afferentation from the ipsilateral vestibular apparatus; at present, the functional and morphological aspects of selective adaptational modifications induced in these compartments by adequate vestibular stimulation have been examined in detail. As to the ventral MN dendrite receiving visual afferentation from the contralateral eye via the ipsilateral tectum, it remained impossible until now to realize the respective approach. We found that training sessions of visual optokinetic stimulation performed in certain modes provide selective activation of one MN through its ventral dendrite and increase the resistivity of this cell to fatiguing stimulation. Therefore, we first demonstrated the possibility of adaptational changes in an individual ventral dendrite of the MN. If fishes were preliminarily adapted with respect to vestibular stimulation, and the resistivity of the soma and lateral dendrite was selectively increased, the resistivity to fatiguing visual test stimulation also increased. On the other hand, if fishes were preliminarily adapted with respect to visual stimulation, the resistivity to fatiguing vestibular stimulation also increased. The observed increase in the resistivity of MNs of fishes adapted due to sensory stimulation of one afferent input with respect to sensory stimulation of other sensory input, as well as an increase in the resistivity to sensory stimulation of one modality, probably show that the mechanism of increase in the resistivity is the same in both cases. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 211–220, May–June, 2008.  相似文献   

15.
In chronic behavioral experiments on rats with a unilateral deficiency of mesencephalo-striatal dopamine, we studied the effect of the blocker of M-cholinoreceptors atropine on the rotational motor activity induced by systemic injections of dopamine agonists exerting direct (apomorphine) and indirect (amphetamine) actions. We found that premedication with atropine increased significantly the intensity of the rotational movements induced by both apomorphine and amphetamine. We conclude that the mesencephalo-striatal dopaminergic system exerts inhibitory effects on cholinergic neurons of the neostriatum. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 459–462, September–December, 2005.  相似文献   

16.
Axonal regeneration and remyelination of peripheral motor neurons (MNs) are critical for restoring neuromuscular motor function after injury or peripheral neuropathy. We examined whether optogenetically mediated light stimulation (OMLS) could enhance the axon outgrowth and myelination of MNs using three-dimensional motor neuron–Schwann cell (MN–SC) coculture on a microfluidic biochip. The biochip was designed to allow SCs to interact with the axons of MNs, while preventing direct contact between SCs and the cell bodies of MNs. Following coculture with SCs on the microfluidic biochip, MNs were transfected with a light-sensitive channelrhodopsin gene. Transfected MNs subjected to repeated light stimulation (20 Hz, 1 hr) produced significantly longer axons than nontransfected MNs. OMLS of MNs greatly increased the number of myelin basic protein (MBP)-expressing SCs, promoting the initiation of myelination of MNs. Ultrastructurally, OMLS of MNs markedly enhanced the thickness of the compact myelin sheath around the MN axons such that the average thickness was closer to that of the theoretical estimates in vivo. Thus, the MN–SC coculture model on a microfluidic biochip augmented by OMLS of MNs is a feasible platform for studying the relationship of neuronal activity with regrowth and remyelination.  相似文献   

17.
In the piriform cortex, individual odorants activate a unique ensemble of neurons that are distributed without discernable spatial order. Piriform neurons receive convergent excitatory inputs from random collections of olfactory bulb glomeruli. Pyramidal cells also make extensive recurrent connections with other excitatory and inhibitory neurons. We introduced channelrhodopsin into the piriform cortex to characterize these intrinsic circuits and to examine their contribution to activity driven by afferent bulbar inputs. We demonstrated that individual pyramidal cells are sparsely interconnected by thousands of excitatory synaptic connections that extend, largely undiminished, across the piriform cortex, forming a large excitatory network that can dominate the bulbar input. Pyramidal cells also activate inhibitory interneurons that mediate strong, local feedback inhibition that scales with excitation. This recurrent network can enhance or suppress bulbar input, depending on whether the input arrives before or after the cortex is activated. This circuitry may shape the ensembles of piriform cells that encode odorant identity.  相似文献   

18.
The spinal α-motoneurone-Renshaw cell system was simulated by a meshed system of three principal negative feedback loops interconnected via “cross”-feedback pathways. Three types of α-motoneurone (MN): S-type, FR-type, and FF-type MNs, and their differing connections to and from Renshaw cells (RCs) were taken into account. The dynamic behaviour of RCs was taken from data provided by Cleveland and Ross (1977) and assumed to be given by a transfer function with one zero and two poles whose time constants τi depended on the overall amount of excitatory input to RCs. Also, the static gain of recurrent inhibition was taken to decrease with increasing excitatory input from α-MN axon collaterals (Cleveland et al., 1981) and to be depressed by spinally descending motor command signals. S-type MNs as well as F-type MNs were assumed to have high-pass characteristics though with slightly different cut-off frequencies. The closed-loop frequency responses of each sub-pool of MNs, S, FR, and FF, at three different levels of recruitment of these sub-pools, were calculated and shown to change significantly with recruitment level. These changes were essentially due to two reasons: firstly, to the general reduction of static gains within the recurrent inhibitory pathways with increasing motor output (recruitment), and secondly, to the increasing complexity of the whole network by recruitment of each new MN type. The particularly strong effect of the latter factor could easily be demonstrated by a comparison of the frequency responses of the MN types when these were, firstly, integrated into the network at their particular level of recruitment, and when they were, secondly, hypothetically assumed “isolated” from the remaining network, i.e., when subjected only to “self-inhibition”, the cross-inhibitory links to other MN types being cut. These results illustrate that the dynamic behaviour of α-MNs submitted to an inhomogeneously distributed recurrent and variable inhibition are not invariant, but depend upon the variable characteristics of a complex MN-RC network. This suggests that an important physiological function of recurrent inhibition via Renshaw cells, particularly of its inhomogeneous distribution, may be to adjust the dynamic MN sensitivity to the particular requirements prevailing at different motor output levels.  相似文献   

19.
Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.  相似文献   

20.
In experiments on the subpharyngeal complex of the Helix ganglia, we found an excitatory monosynaptic input to the pacemaker PPa2 neuron from an unidentified cell of the visceral ganglion and a polysynaptic inhibitory influence of another unidentified neuron of this ganglion on the PPa1 cell. In addition, we revealed three pairs of neurons synaptically connected with each other (excitatory connections) in the visceral ganglion. In the case where we used high-frequency (11 sec−1) stimulation of presynaptic elements, synaptic transmission to the PPa2 neuron demonstrated the greatest efficiency and stability. Neirofiziologiya/Neurophysiology, Vol. 39, No. 1, pp. 32–36, January–February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号