首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8237篇
  免费   811篇
  国内免费   631篇
  2024年   23篇
  2023年   230篇
  2022年   188篇
  2021年   478篇
  2020年   541篇
  2019年   728篇
  2018年   485篇
  2017年   286篇
  2016年   338篇
  2015年   343篇
  2014年   579篇
  2013年   615篇
  2012年   394篇
  2011年   545篇
  2010年   364篇
  2009年   396篇
  2008年   399篇
  2007年   413篇
  2006年   354篇
  2005年   329篇
  2004年   256篇
  2003年   237篇
  2002年   202篇
  2001年   105篇
  2000年   80篇
  1999年   83篇
  1998年   74篇
  1997年   64篇
  1996年   51篇
  1995年   46篇
  1994年   42篇
  1993年   48篇
  1992年   32篇
  1991年   27篇
  1990年   31篇
  1989年   22篇
  1988年   25篇
  1987年   23篇
  1986年   26篇
  1985年   26篇
  1984年   29篇
  1983年   18篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   6篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1974年   6篇
排序方式: 共有9679条查询结果,搜索用时 813 毫秒
1.
In C. elegans, cell death can be readily studied at the cellular, genetic, and molecular levels. Two types of death have been characterized in this nematode: (1) programmed cell death, which occurs as a normal component in development; and (2) pathological cell death which occurs aberrantly as a consequence of mutation. Analysis of mutations that disrupt programmed cell death in various ways has defined a genetic pathway for programmed cell death which includes genes that perform such functions as the determination of which cells die, the execution of cell death, the engulfment of cell corpses, and the digestion of DNA from dead cells. Molecular analysis is providing insightinto the nature of the molecules that function in these aspects of programmed cell death. Characterization of some genes that mutate to induce abnormal cell death has defined a novel gene family called degenerins that encode putative membrane proteins. Dominant alleles of at least two degenerin genes, mec-4 and deg-1, can cause cellular swelling and late onset neurodegeneration of specific groups of cells. © 1992 John Wiley & Sons, Inc.  相似文献   
2.
Two general models for the transspecific evolution of butterfly colour patterns are advanced: directional selection acting equally on both sexes, and disruptive selection involving periods of polymorphism. To consider possible outcomes of me latter process, a morphism notation based on an integrated classification for polymorphism and sexual dimorphism is developed. This notation is used to examine the properties of all morphism transformations possible from the minimal expressions of the nine morphism categories, as reached through defined minimum step changes. The significance of such pathway models is analysed in terms of general properties of butterfly polymorphism. The potential use of pathway models in evolutionary studies is briefly discussed, mainly with respect to phylogenetics, and ideas on the evolution of genetic dominance.  相似文献   
3.
《Cell》2021,184(25):6138-6156.e28
  1. Download : Download high-res image (220KB)
  2. Download : Download full-size image
  相似文献   
4.
5.
6.
7.
Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition.  相似文献   
8.
B‐cell maturation antigen (BCMA) is expressed on normal and malignant plasma cells and represents a potential target for therapeutic intervention. In this study, we characterized the mechanism underlying the protein kinase B (Akt) and c‐Jun N‐terminal kinase (JNK) pathways and BCMA interactions in regulating multiple myeloma (MM) cell survival. It was found that the expression levels of B cell‐activating factor (BAFF) and BCMA were increased in MM cells as compared with those in normal controls. The proliferation of U266 cells was induced by recombinant human BAFF (rhBAFF) and could also be decreased by BCMA siRNA. The expression of Bcl‐2 protein was up‐regulated, and Bax protein was down‐regulated after rhBAFF treatment, which could be reversed by BCMA siRNA. Similarly, the protein p‐JNK and p‐Akt were activated by rhBAFF and could be changed by BCMA siRNA. In addition, the BCMA mRNA and protein expression levels were decreased after treatment with Akt and JNK pathway inhibitors. These results suggest that Akt and JNK pathways are involved in the regulation of BCMA. A novel BAFF/BCMA signalling pathway in MM may be a new therapeutic target for MM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号