首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   0篇
  国内免费   6篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   12篇
  2011年   12篇
  2010年   3篇
  2009年   12篇
  2008年   15篇
  2007年   15篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   13篇
  1995年   4篇
  1994年   8篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1990年   16篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   11篇
  1983年   1篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   11篇
  1978年   4篇
  1977年   4篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
1.
The enzymatic activity of salivary amylase bound to the surface of several species of oral streptococci was determined by the production of acid from starch and by the degradation of maltotetraose to glucose in a coupled, spectrophotometric assay. Most strains able to bind amylase exhibited functional enzyme on their surface and produced acid from the products of amylolytic degradation. These strains were unable to utilise starch in the absence of salivary amylase. Two strains failed to produce acid from starch, despite the presence of functional salivary amylase, because they could not utilise maltose. Strains that could not bind salivary amylase failed to produce acid from starch. In no case was all the bound salivary amylase active, and two strains of Streptococcus mitis which bound amylase did not exhibit any enzyme activity on their cell surface. The ability to bind amylase may confer a survival advantage on oral bacteria which inhabit hosts that consume diets containing starch.  相似文献   
2.
The respiratory system of chemolithoautotrophically-grown Alcaligenes latus contains a, b, and c type cytochromes. Two cytochrome oxidases were identified by their carbon monoxide difference spectra and their differing sensitivities to cyanide and carbon monoxide. The oxidases were cytochrome o and an a-type cytochrome. Ubiquinone was present in A. latus membranes and could be reduced by H2. The quinone analogue, 2-heptyl-4-hydroxy-quinoline-N-oxide (HQNO), was a strong inhibitor of the H2 oxidase reaction, but did not prevent the reduction of either ubiquinone or the cytochromes.Abbreviations HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   
3.
Tn5 was introduced into Alcaligenes eutrophus strain H1 by a suicide vector pSUP1011. Physical characterization of mutants obtained after Tn5 mutagenesis revealed a relatively high frequency of plasmid curing, or deletion of a 50 kb plasmid DNA segment. Results of Southern hybridization and chromosomal walking indicate that the same continuous stretch of plasmid DNA (designated as D region of plasmid) is deleted in four independent isolates. Moreover, the same deletion of plasmid DNA is also observed in a mitomycin C-generated mutant strain H1-4.Journal Paper No. J-12095 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2607, supported in part by a grant from the Iowa High Technology Council  相似文献   
4.
Chromosomal mutants of Alcaligenes eutrophus unable to grow with molecular hydrogen as the energy source also failed to grow with nitrate as the terminal electron acceptor or as a nitrogen source. The mutants (Hno) (i) formed neither soluble nor particulate hydrogenase antigens, (ii) expressed only about 50% the wild type level of ribulosebisphosphate carboxylase activity, and (iii) transported nickel, an essential constituent of active hydrogenase, at a significantly lower rate than wild type cells. Moreover, the mutants grew very slowly with urea as nitrogen source and did not express urease. Growth on formamide was also affected and formamidase activity was induced to only a very low level. Growth of the Hno mutants on succinate, glutamate, fumarate, and malate was significantly slower than wild type, and a reduced rate of succinate incorporation into the mutant cells was demonstrated. The highly pleiotropic phenotype of Hno mutants is indicative of a chromosomal gene with a considerable physiological importance. It affected the expression of both chromosomal and megaplasmid encoded systems of energy, carbon, and nitrogen metabolism. Thus, the hno mutation restricts the metabolic versatility but does not affect the basic metabolic functions of the organism.  相似文献   
5.
Abstract The membrane-bound hydrogenase was localized in cells of Alcaligenes eutrophus by electron microscopic immunocytochemistry. Post-embedding labeling performed on ultrathin sections revealed that the enzyme was located predominantly (80%) at the cell periphery in autotrophically and heterotrophically grown bacteria harvested from the exponential phase of growth. In the stationary growth phase, however, only 50% of the enzyme was found at the cell periphery; the remaining 50% was distributed over the cytoplasm. The relative amount of electron microscopic label per cell as seen by application of the protein A—gold technique was higher in cells grown autotrophically as compared to cells grown heterotrophically on fructose. Derepression of the enzyme was followed electron microscopically in a substrate-shift experiment (growth on fructose, followed by a shift to glycerol). Major amounts of the enzyme appeared to undergo a reattachment to the cytoplasmic membrane under these conditions, starting with a reduced location of the enzyme in the cytoplasm and an accumulation in cell areas close to the cytoplasmic membrane. These findings indicate that the 'membrane-bound' hydrogenase (i.e., that material enriched as membrane-bound enzyme according to the appropriate activity test) is not, in fact, membrane bound or membrane integrated but membrane associated. It may or may not interact with the cytoplasmic face of the cytoplasmic membrane, depending on the growth phase and conditions.  相似文献   
6.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   
7.
Summary Hydrogenases are among the main enzymes involved in bacterial anaerobic corrosion of metals. The study of their mode of action is important for a full comprehension of this phenomenon. The three types ofDesulfovibrio hydrogenases [(Fe), (NiFe), (NiFeSe)] present different patterns in the pH dependence of their activity. The periplasmic enzyme fromDesulfovibrio salexigens and the cytoplasmic enzyme fromDesulfovibrio baculatus both have pH optima at 7.5 for H2 uptake and 4.0 for H2 evolution and H+–D2 exchange reaction (measured by membrane-inlet mass-spectrometry). The H2 to HD ratio at pH above 5.0 is higher than 1.0. The periplasmic hydrogenase fromD. gigas presents the same pH optimum (8.0) for the H+–D2 exchange as for H2 consumption. In contrast, the enzyme fromD. vulgaris has the highest activity in H2 production and in the exchange at pH 5.0. Both hydrogenases have a H2-to-HD ratio below 1.0.  相似文献   
8.
9.
Summary Rhodocyclus gelatinosus grew photosynthetically in the light and consumed H2 at a rate of about 665 nmol/min per mg protein. The uptake-hydrogenase (H2ase) was found to be membrane bound and insensitive to inhibition by CO. The structural genes of R. gelatinosus uptake-H2ase were isolated from a 40 kb cosmid gene library of R. gelatinosus DNA by hybridization with the structural genes of uptake-H2ase of Bradyrhizobium japonicum and Rhodobacter capsulatus. The R. gelatinosus genes were localized on two overlapping DNA restriction fragments subcloned into pUC18. Two open reading frames (ORF1 and ORF2) were observed. ORF1 contained 1080 nucleotides and encoded a 39.4 kDa protein. ORF2 had 1854 nucleotides and encoded a 68.5 kDa protein. Amino acid sequence analysis suggested that ORF1 and ORF2 corresponded to the small (HupS) and large (HupL) subunits, respectively, of R. gelatinosus uptake-H2ase. ORF1 was approximately 80% homologous with the small, and ORF2 was maximally 68% homologous with the large subunit of typical membrane-bound uptake-H2ases.  相似文献   
10.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号