首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
  国内免费   5篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   10篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
This study confirms the presence of the toxigenic benthic dinoflagellates Gambierdiscus belizeanus and Ostreopsis spp. in the central Red Sea. To our knowledge, this is also the first report of these taxa in coastal waters of Saudi Arabia, indicating the potential occurrence of ciguatera fish poisoning (CFP) in that region. During field investigations carried out in 2012 and 2013, a total of 100 Turbinaria and Halimeda macroalgae samples were collected from coral reefs off the Saudi Arabian coast and examined for the presence of Gambierdiscus and Ostreopsis, two toxigenic dinoflagellate genera commonly observed in coral reef communities around the world. Both Gambierdiscus and Ostreopsis spp. were observed at low densities (<200 cells g−1 wet weight algae). Cell densities of Ostreopsis spp. were significantly higher than Gambierdiscus spp. at most of the sampling sites, and abundances of both genera were negatively correlated with seawater salinity. To assess the potential for ciguatoxicity in this region, several Gambierdiscus isolates were established in culture and examined for species identity and toxicity. All isolates were morphologically and molecularly identified as Gambierdiscus belizeanus. Toxicity analysis of two isolates using the mouse neuroblastoma cell-based assay for ciguatoxins (CTX) confirmed G. belizeanus as a CTX producer, with a maximum toxin content of 6.50 ± 1.14 × 10−5 pg P-CTX-1 eq. cell−1. Compared to Gambierdiscus isolates from other locations, these were low toxicity strains. The low Gambierdiscus densities observed along with their comparatively low toxin contents may explain why CFP is unidentified and unreported in this region. Nevertheless, the presence of these potentially toxigenic dinoflagellate species at multiple sites in the central Red Sea warrants future study on their possible effects on marine food webs and human health in this region.  相似文献   
2.
Treatment of N6,N6,5′-O-tribenzoyl-2′,3′-O-isopropylidenetubercidin (VI) with aqueous acetic acid afforded N6,5′-O-dibenzoyltubercidin (V), which was mesylated to yield the dimesylate X. On treatment of X with sodium iodide and zinc dust, the 2′,3′-unsaturated derivatives of tubercidin XI and XIII were obtained.

N6,5′-O-Dibenzoyltubercidin 2′,3′-thionocarbonate (XIV), prepared from V by treatment with Corey-Winter reagent, was converted to the 1-methyl-2′,3′-unsaturated derivative XV in refluxing trimethyl phosphite.  相似文献   
3.
The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nℳ. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.  相似文献   
4.
Controlled laboratory culture of Alexandrium catenella was used to determine the effects of a range of temperatures between 10 and 16 °C on the growth and saxitoxin content of this dinoflagellate, using strain ACC02 isolated from seawater at Aysen, XI Region, Southern Chile. Cell cultures were made using L1 culture medium at 30‰ salinity, and a photon flux density of 59.53 μmol m2 s−1. The results showed that the duration of the exponential growth phase was determined by the experimental temperature, with maximum cell concentrations obtained at 12 °C; significantly lower cell concentrations and growth rates were obtained at 16 °C. Cell dry weight and chlorophyll a values followed cell growth trends. The toxicity of A. catenella was variable at all the experimental temperatures, with a tendency towards having an inverse relation to temperature, with the highest values occurring at 10 °C and the lowest at 16 °C. The optimal range of temperature for the growth of the Chilean strain of A. catenella differed from rates reported for this species isolated at other latitudes, and was correlated with natural temperature conditions predominant in the environment from which it was isolated. The inverse relation of toxicity with temperature in the laboratory was broadly reflected in observations on the toxicity of this dinoflagellate in the field, and coincided with results from the literature.  相似文献   
5.
6.
Laboratory experiments were conducted to examine the ability of several clay minerals from Sweden to remove the fish-killing microalga, Prymnesium parvum Carter, from suspension. In their commercial form (i.e. after incineration at 400 °C), seawater slurries (salinity = 26) of the three minerals tested were generally ineffective at removing P. parvum from culture within a range of 0.01 to 0.50 g/L, and after 2.5 h of flocculation and settling. Dry bentonite (SWE1) displayed the highest removal efficiency (RE) at 17.5%, with 0.50 g/L. Illite (SWE3) averaged only 7.5% RE between 0.10 to 0.50 g/L, while kaolinite (SWE2) kept the cells suspended instead of removing them. Brief mixing of the clay-cell suspension after SWE1 addition improved RE by a factor of 2.5 (i.e. 49% at 0.50 g/L), relative to no mixing. The addition of polyaluminum chloride (PAC, at 5 ppm) to 0.50 g/L SWE1 also improved RE to 50% relative to SWE1 alone, but only minor improvements in RE were seen with SWE2 and SWE2 combined with PAC. In further experiments, P. parvum grown in NP-replete conditions were removed in greater numbers than cells in N- or P-limited cultures, at 0.10–0.25 g/L of SWE1 and 5 ppm PAC. With 0.50 g/L, RE converged at 40% for all three culture conditions. The toxin concentration of NP-replete cultures decreased from 24.2 to 9.2 μg/mL (60% toxin RE) with 0.10–0.50 g/L SWE1 treatment and 5 ppm PAC. A strong correlation was found between cell and toxin RE (r2=0.995). For N-limited cultures, toxin RE ranged between 21 and 87% with the same clay/PAC concentrations, although the correlation between cell and toxin removal was more moderate (r2=0.746) than for NP-replete conditions. Interestingly, the toxin concentration within the clay-cell pellet increased dramatically after treatment, suggesting that clay addition may stimulate toxin production in N-stressed cells. For P-limited cultures, toxin concentration also decreased following clay/PAC treatment (i.e. 36% toxin RE), but toxin removal was poorly correlated to cell removal (r2=0.462). To determine whether incineration affected SWE1’s removal ability, a sample of its wet, unprocessed form was tested. The RE of wet bentonite (SWE4) was slightly better than that of SWE1 (31% versus 17%, respectively, at 0.50 g/L), but when 5 ppm PAC was added, RE increased from 10 to 64% with 0.05 g/L of SWE4, and increased further to 77% with 0.50 g/L. There were no significant differences in RE among NP-replete, N-limited and P-limited cultures using PAC-treated SWE4. Finally, RE varied with P. parvum concentration, reaching a maximum level at the lowest cell concentration (1×103 cells/mL): 100% RE with 0.10 and 0.50 g/L SWE4 + 5 ppm PAC. RE dropped as cell concentration increased to 1×104 and 5×104 cells/mL, but rose again when concentration increased to 1×105 cells/mL, the concentration used routinely for the removal experiments above. Based on these results, SWE4 with PAC was the most effective mineral sample against P. parvum. Overall, these studies demonstrated that clay flocculation can be effective at removing P. parvum and its toxins only under certain treatment conditions with respect to cell concentration, clay type and concentration, and physiological status.  相似文献   
7.
In culture, Gambierdiscus spp. have been shown to prefer irradiances that are relatively low (≤250 μmol photons m−2 s−1) versus those to which they are frequently exposed to in their natural environment (>500 μmol photons m−2 s−1). Although several behavioral strategies for coping with such irradiances have been suggested, it is unclear as to how these dinoflagellates do so on a physiological level. More specifically, how do long term exposures (30 days) affect cell size and cellular chlorophyll content, and what is the photosynthetic response to short term, high irradiance exposures (up to 1464 μmol photons m−2 s−1)? The results of this study reveal that cell size and chlorophyll content exhibited by G. carolinianus increased with acclimation to increasing photon flux density. Additionally, both G. carolinianus and G. silvae exhibited reduced photosynthetic efficiency when acclimated to increased photon flux density. Photosynthetic yield exhibited by G. silvae was greater than that for G. carolinianus across all acclimation irradiances. Although such differences were evident, both G. carolinianus and G. silvae appear to have adequate biochemical mechanisms to withstand exposure to irradiances exceeding 250 μmol photons m−2 s−1 for at least short periods of time following acclimation to irradiances of up to 150 μmol photons m−2 s−1.  相似文献   
8.
We examined the influence of N or P depletion, alternate N‐ or P‐sources, salinity, and temperature on karlotoxin (KmTx) production in strains of Karlodinium veneficum (D. Ballant.) J. Larsen, an ichthyotoxic dinoflagellate that shows a high degree of variability of toxicity in situ. The six strains examined represented KmTx 1 (CCMP 1974, MD 2) and KmTx 2 (CCMP 2064, CCMP 2283, MBM1) producers, and one strain that did not produce detectable karlotoxin under nutrient‐replete growth conditions (MD 5). We hypothesized that growth‐limiting conditions would result in higher cell quotas of karlotoxin. KmTx was present in toxic strains during all growth phases and increased in stationary and senescent phase cultures under low N or P, generally 2‐ to 5‐fold but with some observations in the 10‐ to 15‐fold range. No karlotoxin was observed under low‐N or low‐P conditions in the nontoxic strain MD 5. Nutrient‐quality (NO3, NH4, urea, and glycerophosphate) did not affect growth rate, but growth on NH4 produced 2‐ to 3‐fold higher cellular toxicity and a 50% higher ratio of KmTx 1‐1:KmTx 1‐3 in CCMP 1974. CCMP 1974 showed higher cellular toxicity at low salinity (≤5 ppt) and high temperature (25°C). Our results suggested that given the presence of a toxic strain of K. veneficum in situ, the existence of environmental conditions that favor cellular accumulation of karlotoxin is likely a significant factor underlying K. veneficum–related fish kills that require both high cell densities (104 · mL?1) and high cellular toxin quotas relative to those generally observed in nutrient‐replete cultures.  相似文献   
9.
A bacterial strain named AB-4 showing algicidal activity against Chattonella marina was isolated from coastal water of ULjin, Republic of Korea. The isolated strain was identified as Bacillus sp. by culture morphology, biochemical reactions, and homology research based on 16S rDNA. The bacterial culture led to the lysis of algal cells, suggesting that the isolated strain produced a latent algal-lytic compound. Amongst changes in algicidal activity by different culture filtrate volumes, the 10% (100 μl/ml) concentration showed the biggest change in algicidal activity; there, estimated algicidal activity was 95%. The swimming movements of Chattonella marina cells were inhibited because of treatment of the bacterial culture; subsequently, Chattonella marina cells became swollen and rounded. With longer exposure time, algal cells were disrupted and cellular components lost their integrity and decomposed. The released algicide(s) were heat-tolerant and stable in pH variations, except pH 3, 4, and 5. Culture filtrate of Bacillus sp. AB-4 was toxic against harmful algae bloom (HAB) species and nontoxic against livefood organisms. Bacillus sp. AB-4 showed comparatively strong activity against Akashiwo sanguinea, Fibriocapsa japonica, Heterosigma akashiwo, and Scrippsiella trochoidea. These results suggest that the algicidal activity of Bacillus sp. AB-4 is potentially useful for controlling outbreaks of Chattonella marina.  相似文献   
10.
2004年东海原甲藻赤潮爆发的现场调查和分析   总被引:16,自引:0,他引:16  
2004年4~5月对东海赤潮高发区开展了赤潮原因种的大面观测并对期间爆发的特大赤潮进行跟踪调查,在56个站位采集了171份样品。表层东海原甲藻(Prorocentrum donghaiense)变化范围为2.5×103~6.0×107cells·L-1,最大值出现在122.94°E,30°N的rb12A站;中层东海原甲藻变化范围为1.0×103~5.32×106cells·L-1,最大值出现在rf40站。从水平分布看,东海原甲藻呈不均匀分布,从垂直分布看,赤潮爆发前原甲藻细胞在水体中层密集,大量增殖后上升到表层,爆发赤潮。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号