首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   1篇
  2010年   3篇
  2008年   2篇
  2007年   2篇
  2006年   7篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2000年   3篇
  1998年   2篇
  1992年   4篇
  1986年   1篇
  1980年   1篇
排序方式: 共有63条查询结果,搜索用时 252 毫秒
1.
Aim To document the occurrence of vertical displacements of vegetation in the high plateaus of the Venezuelan Guayana (tepuis) over the last c. 6000 years, and to discuss their significance for the origin of their flora, especially the endemism patterns observed in their flat summits. Two hypotheses have been proposed for the origin of the summit flora. One (the Lost World hypothesis) proposes a long history of evolution in isolation from the surrounding plains, while the other (the Vertical Displacement hypothesis) suggests that vertical movements of vegetation during the Pleistocene glacial‐interglacial cycles would have resulted in floristic mixing within the lowlands, and genetic interchange among plateau summits. Location This work has been conducted on the flat summit of the Churí‐tepui, in the Chimantá massif, at 5°15′ Lat. N and 62°01′ Long. W, around 2250 m altitude. Methods Pollen analysis and radiocarbon dating of two peat outcrops, using modern analogue technique and numerical methods for palaeoecological interpretation were used. Results The replacement of a high‐altitude plant community (a paramoid Chimantaea shrubland) by a lower elevation (< 2300 m) Stegolepis meadow, occurred about 2500 years before present (yr bp ). This vegetation change is inferred to have resulted from a regional climatic shift to higher temperature and moisture. A subsequent decrease in temperature and moisture led to the establishment of present conditions after about 1450 yr bp . Main conclusions The highland vegetation of the tepuis responded to climate shifts with vertical displacements, supporting the hypothesis of vertical mixing. However, a physiographical analysis shows that around half of the tepuis would never have been connected by lowlands. Therefore, both hypotheses are needed to explain the origins of the summit flora in the tepuis.  相似文献   
2.
3.
The Guayana Highlands (GH) constitute a highly diverse, but relatively poorly studied Neotropical biome, comprised of ~50 flat-topped mountain summits (called tepuis). Previous studies based on warming forecasts for the region suggested that an upward displacement of environmental conditions of 500–700 m could occur by 2100, potentially resulting in the extinction of c. 50% of its endemic flora due to total habitat loss. To assess the ecological responses of the species to climate change, and select the appropriate conservation measures, long-term monitoring of the GH plant communities will be necessary. In this study, the baseline state for future comparisons was established for the best explored tepui in terms of its flora, Roraima-tepui (2810 m), through a floristic characterization of its different vegetation types. We also identified the environmental gradients underlying the major plant communities, and assessed the effects of human activities on the chemistry of soils and water at three field camps. Our results yielded five main community types: three meadows, one shrubland, and one forest, with their corresponding diagnostic species. The herbaceous communities were mainly influenced by the presence of flat sandy soils, with varying flooding capacity. Shrublands and forests were characterized by irregular organic soils with very low pH. Finally, pH values below 3 were measured on an organic soil of a field camp, although further studies will be necessary to attribute this deviation to human activities.  相似文献   
4.
Primates inhabiting human-modified landscapes often exploit matrix habitat to supplement their diet with cultivated foods, at times resulting in economic losses and conflict with local people. Understanding human-nonhuman primate interactions and the attitudes and perceptions of local people towards crop feeding species are crucial to designing effective species-based management plans. Over a 12-month period, we used scan sampling to study the consumption of cultivated foods and matrix use patterns by two habituated groups of Bale monkeys (Chlorocebus djamdjamensis), Ethiopian-endemic bamboo specialists, in two forest fragments (Kokosa and Afursa) set amidst human settlements and farmland in the southern Ethiopian Highlands. Further, we conducted interviews with local people to document their attitudes and perceptions towards Bale monkeys at the two sites. We found that Bale monkeys at Kokosa, a more degraded habitat by most measures, consumed significantly more cultivated foods than their counterparts at Afursa. Moreover, Bale monkeys at Kokosa spent significantly more time in the matrix than in the forest habitat, while monkeys at Afursa spent significantly less time in the matrix than in the forest habitat. Not surprisingly, local people displayed a more negative attitude towards monkeys inhabiting Kokosa than those inhabiting Afursa. The differences in Bale monkey cultivated food consumption and matrix use patterns—as well as in local people's attitudes and perceptions towards Bale monkeys—between Kokosa and Afursa are probably associated with differences in habitat structure, degree of habitat alteration, and land-use practices between the sites. We conclude that to ensure long-term coexistence between Bale monkeys and local people in human-modified landscapes, it is vital to incorporate nearby matrix habitats into management plans and to work closely with local communities to develop effective nonlethal crop protection strategies, thereby reducing the likelihood of negative interactions between Bale monkeys and humans.  相似文献   
5.
Understanding how threatened forest primates use a heterogeneous landscape is essential to ensuring their survival. Kipunji (Rungwecebus kipunji) are ‘critically endangered’, arboreal monkeys restricted to two sites in Tanzania. Over 90% of the population lives in the degraded Rungwe‐Kitulo forests of the Southern Highlands. In this study, we present the first comprehensive investigation into daily path length and home range size of kipunji, based on data from four groups followed simultaneously over 70 consecutive days on Mt. Rungwe. The mean daily distance travelled was 1293 m (SE 150.82), and daily distance was not significantly correlated to group size. Using fixed kernel density estimation, an area enclosing 90% of the home range calculated using the ‘reference’ method as a smoothing parameter, measured a mean of 306.18 ha (SE 67), and the core area (50% use) was 86.55 ha (SE 18.73). Using the ‘least‐squares cross validation’ method, the mean home range and core area were 205.45 ha (SE 57.02) and 55.45 ha (SE 14.23) respectively. Home range overlap was extensive, although contact between groups was rare, with >97.30% of all observations within 20 min separated by >250 m. The data strongly suggest that kipunji are not territorial.  相似文献   
6.
We assess variation in morphological and molecular characters among three species of Myosorex (the mouse shrew) –Myosorex geata, Myosorex kihaulei, and Myosorex zinki– as a means to test previously proposed biogeographic hypotheses for Tanzanian ‘sky islands’ and systematic hypotheses for Tanzanian mouse shrews. We analyse 17 cranial and dental variables using multivariate statistics and perform phylogenetic and phylogeographic analyses on sequences of mitochondrial and nuclear DNA; samples are drawn from every known Tanzanian population of Myosorex. Morphometric and phylogenetic analyses reveal that M. zinki is distinct, but that currently isolated populations of M. geata and M. kihaulei are relatively similar to one another, and may not have been isolated over geological time scales. Analyses of molecular variance identify statistically significant, but limited, genetic variation within and between isolated populations of M. geata and M. kihaulei. Between two putative regional biogeographic boundaries, greater genetic variation is explained by grouping populations on either side of the Ruaha River than by grouping populations on either side of the Makambako Gap. Our results are in agreement with recent studies illustrating the close relationship between faunas of the Southern Highlands and southern Eastern Arc Mountains, diminishing the apparent importance of the Makambako Gap as a historical biogeographic barrier. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 669–680.  相似文献   
7.
Ochoa G. Jos 《Biotropica》2000,32(1):146-164
The responses of small mammal communities to forest disturbance by logging were evaluated. The study area was located in the Imataca Forest Reserve (Venezuelan Guayana Region), where vegetation was predominantly lowland rain forest. Field analyses were based on a comparative inventory of species inhabiting primary forests and areas disturbed by selective logging. The taxonomic groups used as indicators of die ecological impact of logging belonged to the orders Didelphimorphia, Chiroptera, and Rodentia (families Sciuridae, Muridae, and Echimyidae). The following sampling methods were used: (1) mist nets; (2) traps in 2.4 ha grids (each with 120 stations: 60 at ground level and 60 in trees); and (3) diurnal and nocturnal sight surveys. Total sampling effort consisted of 1904 net‐hours, 10,320 trap‐nights, and 567 h of direct observations. At least 83 mammalian species inhabited die evaluated forests (74.7 percent corresponding to Chiroptera), of which 15.3 percent were restricted to primary forest. In logged areas, small mammal communities were characterized by: (1) higher abundances of individuals; (2) lower proportions of carnivorous and gleaning insectivorous bats; (3) increases in the relative abundance of frugivorous bat species that eat the fruits of colonizing plants; (4) higher proportions of aerial insectivores (Molossidae) at die lowest levels of die forest; (5) simplification in trophic structure of non‐volant species, widi semiarboreal predator‐omnivores being die dominant guild (followed by terrestrial frugivore‐omnivores); and (6) reduction in the relative abundance of mainly canopy‐associated species. These results are explained by: (1) lower availability of key resources associated with primary forest (e.g., roosts in hollow trunks of mature trees, canopy fruits, and tree‐crown continuity); (2) higher relative abundance of some food resources, such as terrestrial invertebrates and saprophytic plants, principally in areas where primary production is limited by low‐fertility soils; (3) increase of roosting sites under fallen trunks; (4) modification of microclimatic conditions at die understory level as a consequence of a greater incident sunlight after canopy opening; and (5) increase in density of early successional plants. The implications of these results to the conservation of biodiversity in forests managed for timber extraction in die Venezuelan Guayana Region are discussed.  相似文献   
8.
An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that life-history evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time.  相似文献   
9.
The fully vegetated summits of the table mountains that form the Guayana Highlands (GH), in northern South America, hold amazing biodiversity and endemism levels, and unique vegetation types. In spite of their present‐day healthy appearance, their biota is seriously threatened of habitat loss by upward displacement, because of the projected warming for the end of this century. Available data are still insufficient for a definite assessment, but preliminary estimations based on representative endemic vascular plant species show that roughly one‐tenth to one‐third of them would loss their habitat with the 2–4°C temperature increase predicted for the region by AD 2100. Given the underlying endemism, the eventual loss of biodiversity will be of global nature. Other mountain ranges around the world with similar characteristics of the GH, namely topographical isolation, high endemism and absence of nival stage because of the lower altitude, would be under similar unexpected risk, and should be urgently considered for conservation purposes.  相似文献   
10.
Until recently, the high degree of diversity and endemism of the Guayana Highlands was explained within the frame of the refuge theory. Although this hypothesis is unsupported by recent palaeoecological evidence, no new diversification model has been proposed. This paper is a proposal based on the latest palynological findings that indicate a downward biotic migration of c. 1100 m altitude during glacials, and the subsequent interglacial upward shift, in response to colder and warmer climates, respectively. Therefore, during glacials, biotic mixing is expected in the lowlands, thus promoting sympatric speciation, hybridization and polyploidy. At the mountaintops, unknown cold‐adapted taxa and páramo‐like(?) communities are expected to have occurred, and vicariance prevailed. In the interglacials, many taxa have had the opportunity for ascending to the mountains again, allowing genetic interchange among their slopes and summits, while others would have been adapted to lowlands. The interglacial highland communities, where vicariance still predominated, experienced some extinction owing to habitat loss by upland displacement. According to this model, the successive alternation of glacials and interglacials resulted in a net increase of diversity and endemism, favoured by the complex topography and habitat heterogeneity, which allowed high niche diversification. This model has some similarities with the Andean and Amazon modes of diversification, but the special topographical characteristics of the Guayana region made it different in other fundamental aspects. The Guayana Highlands would have acted as a ‘biodiversity pump’ for the surrounding inner and coastal lowlands, due to the repeated speciation and further spreading events, as a response to climate. Several working hypotheses are suggested in relation to the proposed model. The use of coordinated international multiproxy projects combining palaeoecology and genetic analysis of modern taxa is strongly encouraged for exploring these ideas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号