首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2021年   2篇
  2017年   1篇
  2014年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
Background/Aims: A close relationship exists between inflammation and vascular calcification. Although fetuin-A is known to be an inhibitor of calcification, studies correlating levels of this glycoprotein to markers of inflammation are limited. To understand these relationships, we investigated the relationship between serum fetuin-A and proinflammatory cytokine levels in patients with chronic renal failure (CRF). Methods: Thirty-two patients on haemodialysis (HD), 32 conservatively managed chronic kidney disease (CKD) patients and a control group of 25 subjects with normal renal function were enrolled in this study. Serum fetuin-A, IL-1β, IL-6 and TNF-α levels were measured by ELISA. Correlations between serum fetuin-A and IL-1β, IL-6 and TNF-α concentrations were investigated by the Spearman correlation test. Results: In 64 CRF patients (on HD and with CKD), serum fetuin-A was significantly and inversely related to IL-1β (P < 0.001), IL-6 (P = 0.025) and TNF-α levels (P = 0.007), respectively. The serum fetuin-A levels of the control subjects were not significantly correlated to levels of the inflammatory markers IL-1β, IL-6 and TNF-α (P = 0.551, 0.985 and 0.984, respectively). Conclusion: The negative correlation between serum fetuin-A and cytokine concentrations in CRF patients supports the hypothesis of inflammation-dependent down-regulation of fetuin-A expression.  相似文献   
3.
Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D.  相似文献   
4.
alpha2-HS glycoprotein (AHSG), also known as fetuin-A, inhibits insulin receptor autophosphorylation and tyrosine kinase activity in vitro and in vivo. Earlier we have shown that fetuin-null (KO) mice demonstrate improved insulin sensitivity and resistance to diet-induced obesity. Since aging is associated with insulin resistance and impaired glucose handling, we tested the hypothesis that fetuin-null (KO) mice are resilient to changes in insulin sensitivity associated with aging. Aged (80-week-old) fetuin-null mice were leaner and demonstrated significantly lower body weights compared to age- and sex-matched wild-type (WT) littermates. Leanness in aged fetuin KO mice was accompanied by a significant increase in dark-onset energy expenditure, without marked alteration of respiratory quotient. In comparison to WT mice, fetuin KO mice demonstrated a lower fasting insulin resistance index, and significantly lower blood glucose and insulin levels, following a 4h fast. Interestingly, despite significantly decreased insulin levels during a glucose tolerance test, aged fetuin-null mice demonstrated a similar glucose excursion as WT mice, indicative of improved insulin sensitivity. Analysis of aldehyde-fuchsin stained pancreas from aged fetuin KO mice indicated no difference in islet beta-cell size or number. An insulin tolerance test confirmed the increased insulin sensitivity of aged fetuin KO mice. Further, compared to WT mice, aged fetuin-null mice demonstrated increased skeletal muscle and liver IR autophosphorylation and TK activity. Taken together, this study suggests that the absence of fetuin may contribute to the improvement of insulin sensitivity associated with aging.  相似文献   
5.
A critical part of the functional development of our peripheral balance system is the embryonic formation of otoconia, composite crystals that overlie and provide optimal stimulus input to the sensory epithelium of the gravity receptor in the inner ear. To date neither the functions of otoconial proteins nor the processes of crystal formation are clearly defined. Using gene targeting and protein analysis strategies, we demonstrate that the predominant mammalian otoconin, otoconin-90/95 (Oc90), is essential for formation of the organic matrix of otoconia by specifically recruiting other matrix components, which includes otolin, a novel mammalian otoconin that we identified to be in wildtype murine otoconia. We show that this matrix controls otoconia growth and morphology by embedding the crystallites during seeding and growth. During otoconia development, the organic matrix forms prior to CaCO3 deposition and provides optimal calcification efficiency. Histological and ultrastructural examinations show normal inner ear epithelial morphology but reduced acellular matrices, including otoconial, cupular and tectorial membranes, in Oc90 null mice, likely due to an absence of Oc90 and a profound reduction of otolin. Our data demonstrate the critical roles of otoconins in otoconia seeding, growth and anchoring and suggest mechanistic similarities and differences between otoconia and bone calcification.  相似文献   
6.
The identity of the cell adhesive factors in fetal bovine serum, commonly used to supplement growth media, remains a mystery due to the plethora of serum proteins. In the present analyses, we showed that fetuin-A, whose function in cellular attachment in tissue culture has been debated for many years, is indeed a major serum cell attachment factor particularly for tumor cells. We are able to report this because of a new purification strategy that has for the first time given us a homogeneous protein band in colloidal Coomassie-stained gels that retains biological activity. The tumor cells adhered to immobilized fetuin-A and not α(2)-macroglobulin, its major contaminant. The interaction of cells with fetuin-A was driven mainly by Ca(2+) ions, and cells growing in regular medium supplemented with fetal bovine serum were just as sensitive to loss of extracellular Ca(2+) ions as cells growing in fetuin-A. Fractionation of human serum revealed that cell attachment was confined to the fractions that had fetuin-A. Interestingly, the tumor cells also took up fetuin-A and secreted it back to the medium using an unknown mechanism that can be observed in live cells. The attachment of tumor cells to fetuin-A was accompanied by phosphatidylinositol 3-kinase/Akt activation that was down-regulated in cells that lack annexin-A6, one of the cell surface receptors for fetuin-A. Taken together, our data show the significance of fetuin-A in tumor cell growth mechanisms in vitro and open new research vistas for this protein.  相似文献   
7.

Background

The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs.The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy.

Methods and results

Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased.

Conclusions

Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy.  相似文献   
8.
BackgroundEvaluating the impact of chromium picolinate supplementation on glycemic status, lipid profile, inflammatory markers and fetuin-A in patients with non-alcoholic fatty liver disease (NAFLD).MethodsIn present research, participants (N = 46) were randomized to (400 mcg/day, n = 23) chromium picolinate and placebo (n = 23) for 3 months.ResultsGlucose indices, and lipid profiles, inflammatory biomarker and fetuin-A were measured before and after the intervention. Chromium reduced triglyceride (TG), atherogenic index of plasma (AIP), very-low-density lipoprotein (VLDL), insulin, homeostatic model assessment for insulin resistance (HOMA-IR), high-sensitivity C-reactive protein (hs-CRP), interleukin (IL) -6, tumor necrosis factor-alpha (TNF-α) and fetuin-A significantly compared to placebo group (p < 0.05). Furthermore, chromium significantly increased the quantitative insulin sensitivity check index (QUICKI). There were no significant differences in total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), fasting blood sugar (FBS), Hemoglobin A1c (HbA1C), interleukin (IL)-17 between the two groups (p < 0.05).ConclusionChromium picolinate significantly decreased TG, insulin, HOMA-IR, fetuin-A, the number of inflammatory factors, and increased QUICKI without changing FBS, HbA1C, TC, LDL, HDL, IL-17 levels and liver steatosis intensity in patients with NAFLD. Further studies by examining the effect of different doses of chromium and mechanisms of cellular action, would help further clarify the subject.  相似文献   
9.
The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号