首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   199篇
  2021年   1篇
  2018年   12篇
  2017年   88篇
  2016年   44篇
  2015年   43篇
  2014年   39篇
  2013年   48篇
  2012年   46篇
  2011年   10篇
  2008年   3篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
1.
Summary

Hydroxylation of salicylate and D-phenylalanine was measured to test the usefulness of these compounds for hydroxyl radical (HO?) detection in chemical and biological systems. When HO? were produced by the photolytic decomposition of hydrogen peroxide, nearly equal amounts of 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were produced from salicylate, with catechol as a minor product. In the photolytic reaction, nearly equal concentrations of p-,m-, and o-tyrosine were formed from D-phenylalanine. When salicylate or D-phenylalanine was present with Fenton reagents or in iron(II) autoxidation systems, the relative proportions of hydroxylated products were similar to those observed after photolysis, although less total products were usually detected. In contrast, when similar experiments were conducted with isolated hepatic microsomes and perfused livers, 2,5-DHBA was the primary product from salicylate, and p-tyrosine was the major product from D-phenylalanine. Cytochrome P-450 enzymes can hydroxylate salicylate to produce 2,5-DHBA, and it is likely that phenylalanine hydroxylase produces most of the p-tyrosine detected in hepatic tissues. Thus, although both salicylate and D-phenylalanine are useful probes for hydroxyl radical formation in chemical systems, hydroxylated products formed from enzymatic reactions complicate interpretation of data from both compounds in vivo.  相似文献   
2.
No ideal serum biomarker currently exists for the early diagnosis of colorectal cancer (CRC). Magnetic bead‐based fractionation coupled with MALDI‐TOF MS was used to screen serum samples from CRC patients, healthy controls, and other cancer patients. A diagnostic model with five proteomic features (m/z 1778.97, 1866.16, 1934.65, 2022.46, and 4588.53) was generated using Fisher algorithm with best performance. The Fisher‐based model could discriminate CRC patients from the controls with 100% (46/46) sensitivity and 100% (35/35) specificity in the training set, 95.6% (43/45) sensitivity and 83.3% (35/42) specificity in the test set. We further validated the model with 94.4% (254/269) sensitivity and 75.5% (83/110) specificity in the external independent group. In other cancers group, the Fisher‐based model classified 25 of 46 samples (54.3%) as positive and the other 21 as negative. With FT‐ICR‐MS, the proteomic features of m/z 1778.97, 1866.16, 1934.65, and 2022.46, of which intensities decreased significantly in CRC, were identified as fragments of complement C3f. Therefore, the Fisher‐based model containing five proteomic features was able to effectively differentiate CRC patients from healthy controls and other cancers with a high sensitivity and specificity, and may be CRC‐specific. Serum complement C3f, which was significantly decreased in CRC group, may be relevant to the incidence of CRC. J. Cell. Biochem. 114: 448–455, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
Loss of NKX3.1 is an early and consistent event in prostate cancer and is associated with increased proliferation of prostate epithelial cells and poor prognosis. NKX3.1 stability is regulated post‐translationally through phosphorylation at multiple sites by several protein kinases. Here, we report the paradoxical stabilization of the prostate‐specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim‐1 in prostate cancer cells. Pharmacologic Pim‐1 inhibition using the small molecule inhibitor CX‐6258 decreased steady state levels and half‐life of NKX3.1 protein but mRNA was not affected. This effect was reversed by inhibition of the 26S‐proteasome, demonstrating that Pim‐1 protects NKX3.1 from proteasome‐mediated degradation. Mass spectrometric analyses revealed Thr89, Ser185, Ser186, Ser195, and Ser196 as Pim‐1 phospho‐acceptor sites on NKX3.1. Through mutational analysis, we determined that NKX3.1 phosphorylation at Ser185, Ser186, and within the N‐terminal PEST domain is essential for Pim‐1‐mediated stabilization. Further, we also identified Lys182 as a critical residue for NKX3.1 stabilization by Pim‐1. Pim‐1‐mediated NKX3.1 stabilization may be important in maintaining normal cellular homeostasis in normal prostate epithelial cells, and may maintain basal NKX3.1 protein levels in prostate cancer cells. J. Cell. Biochem. 114: 1050–1057, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
5.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Antioxidants may prevent apoptosis of cancer cells via inhibiting reactive oxygen species (ROS). However, to date no study has been carried out to elucidate the effects of strong antioxidant N‐acetylcysteine (NAC) on Bleomycin induced apoptosis in human testicular cancer (NTERA‐2, NT2) cells. For this reason, we studied the effects of Bleomycin and NAC alone and in combination on apoptotic signaling pathways in NT2 cell line. We determined the cytotoxic effect of bleomycin on NT2 cells and measured apoptosis markers such as Caspase‐3, ‐8, ‐9 activities and Bcl‐2, Bax, Cyt‐c, Annexin V‐FTIC and PI levels in NT2 cells incubated with different agents for 24 h. Early apoptosis was determined using FACS assay. We found half of the lethal dose (LD50) of Bleomycin on NT2 cell viability as 400, 100, and 20 µg/ml after incubations for 24, 48, and 72 h, respectively. Incubation with bleomycin (LD50) and H2O2 for 24 h increased Caspase‐3, ‐8, ‐9 activities, Cyt‐c and Bax levels and decreased Bcl‐2 levels. The concurrent incubation of NT2 cells with bleomycin/H2O2 and NAC (5 mM) for 24 h abolished bleomycin/H2O2‐dependent increases in Caspase‐3, ‐8, ‐9 activities, Bax and Cyt‐c levels and bleomycin/H2O2‐dependent decrease in Bcl‐2 level. Our results indicate that bleomycin/H2O2 induce apoptosis in NT2 cells by activating mitochondrial pathway of apoptosis, while NAC diminishes bleomycin/H2O2 induced apoptosis. We conclude that NAC has antagonistic effects on Bleomycin‐induced apoptosis in NT2 cells and causes resistance to apoptosis which is not a desired effect in eliminating cancer cells. J. Cell. Biochem. 114: 1685–1694, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
7.
The principal problem arising from prostate cancer (PCa) is its propensity to metastasize to bones, and it's crucial to understand the mechanism of tumor progression to metastasis in order to develop therapies that may reduce the morbidity and mortality of PCa patients. Although we had identified that microRNA(miR)‐145 could repress bone metastasis of PCa via regulating epithelial–mesenchymal transition (EMT) in previous study, it is still unknown how miR‐145 regulated EMT. In the present study, we constructed a luciferase reporter system and identified HEF1 as a direct target of miR‐145. More importantly, HEF1 was shown to promote migration, invasion and EMT of PC‐3 cells, a human PCa cell line originated from a bone metastatic PCa specimen. And HEF1 was also shown to partially mediate miR‐145 suppression of EMT and invasion. Furthermore, inhibition of HEF1 repressed bone invasion of PC‐3 cells in vivo. Expression of HEF1 was negatively correlated with miR‐145 in primary PCa and bone metastatic specimens, but HEF1 was higher in samples which were more likely to commit to bone metastasis or those with higher free prostate‐specific antigen (fPSA) levels and Gleason scores. Taken together, these findings indicate that HEF1 promotes EMT and bone invasion in prostate cancer by directly targeted by miR‐145, and miR‐145 suppresses EMT and invasion, at least in part, through repressing HEF1. J. Cell. Biochem. 114: 1606–1615, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
8.
Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. In this study, we examined the effect of GKN1 on the expression of inflammatory mediators, including NF‐κB, COX‐2, and cytokines in GKN1‐transfected AGS cells and shGKN1‐transfected HFE‐145 cells. Lymphocyte migration and cell viability were also analyzed after treatment with GKN1 and inflammatory cytokines in AGS cells by transwell chemotaxis and an MTT assay, respectively. In GKN1‐transfected AGS cells, we observed inactivation and reduced expression of NF‐κB and COX‐2, whereas shGKN1‐transfected HFE‐145 cells showed activation and increased expression of NF‐κB and COX‐2. GKN1 expression induced production of inflammatory cytokines including IL‐8 and ‐17A, but decreased expression of IL‐6 and ‐10. We also found IL‐17A expression in 9 (13.6%) out of 166 gastric cancer tissues and its expression was closely associated with GKN1 expression. GKN1 also acted as a chemoattractant for the migration of Jurkat T cells and peripheral B lymphocytes in the transwell assay. In addition, GKN1 significantly reduced cell viability in both AGS and HFE‐145 cells. These data suggest that the GKN1 gene may inhibit progression of gastric epithelial cells to cancer cells by regulating NF‐κB signaling pathway and cytokine expression. J. Cell. Biochem. 114: 1800–1809, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号