首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2011年   3篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2000年   1篇
  1998年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有40条查询结果,搜索用时 203 毫秒
1.
亮叶杨桐(石芽茶)中黄酮类成分的研究   总被引:8,自引:0,他引:8  
金静兰  文永新  成桂仁   《广西植物》1985,(3):297-300
从广西产亮叶杨桐(Adinandra nitida Merr.ex H.L.Li)中,分得三种黄酮类成分:Ⅰ、Ⅱ和Ⅲ。经IR、UV(位移诊断)、熔点、混熔点、薄层层析鉴定:Ⅰ为芹菜素(Apigenin);Ⅱ为芹菜素-5-0-α-L-吡喃鼠李糖基(1→4-6~(?)-乙酰基-β-D-吡喃葡萄糖吡;Ⅲ为芹菜素-5-0-α-L-吡喃鼠李糖基(1→4)-β-D-吡喃葡萄糖甙。  相似文献   
2.
Four naturally occurring compounds, indole-3-carbinol (I3C), apigenin (Api), ellagic acid (EA) and tannic acid (TA), were tested for their inhibitory effects against 1-nitropyrene- (1-NP) or 1,6-dinitropyrene (1,6-DNP)-induced genotoxicity in Salmonella tester strains and Chinese hamster ovary (CHO) cells. Api and TA strongly inhibited the bacterial mutagenesis induced by nitropyrenes, while 13C and EA had little or no effect. For example, in TA98, 0.2 μmole Api resulted in 48% and 56% inhibition of the mutagenicity induced by 4 nmole 1-NP and 0.035 nmole 1,6-DNP, respectively. With an equal dose, expected, a good correlation was observed between the antimutagenicity of nitropyrenes and their inhibitory effect on nitroreductase activity. This indicated that one of the possible antimutagenic mechanisms of Api or TA was to inactivate the metabolism of nitropyrenes. Two biological end-points, cytotoxicity and sister-chromatid exchange (SCEs), were used to screen the antigenotoxic effects of these compounds in CHO cells. At the sub-cytotoxic dose, 13C, Api and TA all protected against the cytotoxicity induced by 1-NP and 1,6-DNP, but only TA and Api gave a significant reduction of the frequency of SCEs. Moreover, this reduction was found to be highly dose-dependent.  相似文献   
3.
Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10−7 M−1 s−1 and 4.0 × 10−9 M−1 s−1 for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin–apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α–β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals.  相似文献   
4.
Many papers in the literature have described complex effects of flavonoids and other polyphenols on cells in culture. In this paper we show that hydroxytyrosol, delphinidin chloride and rosmarinic acid are unstable in three commonly-used cell culture media (Dulbecco’s modified Eagle’s medium (DMEM), RPMI 1640 (RPMI) and Minimal Essential Medium Eagle (MEM)) and undergo rapid oxidation to generate H2O2. This may have confounded some previous studies on the cellular effects of these compounds. By contrast, apigenin, curcumin, hesperetin, naringenin, resveratrol and tyrosol did not generate significant H2O2 levels in these media. Nevertheless, curcumin and, to a lesser extent, resveratrol (but not tyrosol) were also unstable in DMEM, so the absence of detectable H2O2 production by a compound in cell culture media should not be equated to stability of that compound. Compound instability and generation of H2O2 must be taken into account in interpreting effects of phenolic compounds on cells in culture.  相似文献   
5.
Apigenin is a representative dietary flavone (2-phenyl-4H-1-benzopyran-4-one) inhibiting cancer cell growth both in cell culture systems and in vivo. The prooxidant potential of apigenin was confirmed by the observations using flowcytometric and immunoblotting techniques that the intracellular accumulations of reactive oxygen species (ROS) and protein carbonyls were detected in the cells treated with apigenin in a dose-dependent manner. Conversely, chrysin (5,7-dihydroxyflavone) did not show any prooxidant effect. A structure-activity relationship data thus indicated that a 4'-monohydroxyl group, which can be oxidized to semiquinone radical but not up to quinone-like metabolite, is essential for prooxidant effect. When HL-60 cells were treated with not only a heme synthesis inhibitor succinyl acetone (SA) but also myeloperoxidase (MPO) inhibitors, the ROS level enhanced by apigenin was significantly reduced. The gathered data suggested that peroxidase-catalyzed production of apigenin B-ring phenoxyl radicals might be responsible for the prooxidant effect. This is supported by the observation that MPO is able to catalyze production of apigenin phenoxyl radicals, detected by an electron spin resonance-spin trapping technique. We also reveal that both SA and alpha-tocopherol enhance cellular susceptibility to apoptosis-inducing stimuli by apigenin. In conclusion, the prooxidant effect of apigenin is likely to oxidize a variety of thiols through the formation of phenoxyl radicals and thus seems to play a significant role in the abortive apoptotic pathway switching to necrotic cell death.  相似文献   
6.
Polyphenol have been reported to have physiological effects with respect to alleviating diseases such as osteoporosis and osteopetrosis. We recently reported that the olive polyphenol hydroxytyrosol accelerates bone formation both in vivo and in vitro. The present study was designed to evaluate the in vivo and in vitro effects of apigenin (4′,5,7-trihydroxyflavone), one of the major polyphenols in olives and parsley, on bone formation by using cultured osteoblasts and osteoclasts and ovariectomized (OVX) mice, respectively. Apigenin markedly inhibited cell proliferation and indices of osteoblast differentiation, such as collagen production, alkaline phosphatase activity, and calcium deposition in osteoblastic MC3T3-E1 cells at concentrations of 1–10 μM. At 10 μM, apigenin completely inhibited the formation of multinucleated osteoclasts from mouse splenic cells. Moreover, injection of apigenin at 10 mg kg−1 body weight significantly suppressed trabecular bone loss in the femurs of OVX mice. Our findings indicate that apigenin may have critical effects on bone maintenance in vivo.  相似文献   
7.
Many flavonoids have been shown to possess prooxidant properties, capable of causing oxidative stress, especially at larger doses. Here, we examined the potential cell toxicity caused by exposure to the hydroxylated flavones chrysin, apigenin, luteolin and quercetin in comparison to the methylated flavones 5,7-dimethoxyflavone and 3',4'-dimethoxyflavone in normal Rainbow trout hepatocytes. The hydroxylated flavones, especially chrysin, demonstrated cell toxicity and inhibition of DNA synthesis at very low (2 microM) concentrations. The cytotoxicity of chrysin may partially be due to its metabolism by myeloperoxidase, which was shown to be present in these normal trout liver cells (164pmol/(min mg protein)). In contrast, methylated flavones showed no significant metabolism by myeloperoxidase and no signs of toxicity, even at much higher concentrations. These results may be useful for further investigations of cytotoxicity of dietary flavonoids.  相似文献   
8.
Abstract: Apigenin, a pharmacologically important flavonoid of the chamomile plant, was analyzed at two ploidy levels during a three-year period. This flavonoid accumulates in the ligulate florets of the anthodium. Higher percentages of apigenin were found in the ligulate florets of a diploid cultivar, in comparison with tetraploid plants. However, when the total apigenin (mg of compound) in the anthodium was evaluated, tetraploid individuals accumulated significantly more flavonoid. Moreover, in contrast to morphological quantitative characteristics of the anthodium, which varied significantly in different years, apigenin percentage in the ligulate florets was constant and not influenced by environmental conditions. Apigenin content was also found to change during inflorescence ontogeny. It represents the highest percentage of dry mass in young developing florets and anthodia of both cultivars. The total apigenin content of the anthodium, however, increases during flowering, although at later stages apigenin forms only a minor part of ligulate floret and anthodium dry mass.  相似文献   
9.
Apigenin (4',5,7,-trihydroxyflavone) is a flavonoid abundant in the common fruits, herbs and vegetables constituting the bulk of the human diet. This study was aimed at quantifying the effects of apigenin on the basic cellular traits determining cancer development, i.e. cell proliferation, gap junctional coupling, and motility, using the Dunning rat prostate MAT-LyLu cell model. We demonstrated that apigenin considerably inhibits MAT-LyLu cell proliferation and significantly enhances the intensity of connexin43-mediated gap junctional coupling. This effect correlates with an increased abundance of Cx43-positive plaques at the cell-to-cell borders seen in apigenin-treated variants. Moreover, we observed an inhibitory effect of apigenin on the motility of MAT-LyLu cells. The basic parameters characterising MAT-LyLu cell motility, especially the rate of cell displacement, considerably decreased upon apigenin administration. This in vitro data indicates that apigenin may affect cancer development in general, and prostate carcinogenesis in particular, via its influence on cellular activities decisive for both cancer promotion and progression, including cell proliferation, gap junctional coupling and cell motility and invasiveness.  相似文献   
10.
A high-performance liquid chromatographic (HPLC) method is described for the determination of apigenin and the 4′-methylated derivative acacetin in human urine using column-switching and ultraviolet (UV) absorbance detection. Urine samples were enzymatically hydrolysed and solid-phase extracted prior to injection onto the HPLC system. Prior to elution of apigenin and the internal standard, 5,7,8-trihydroxyflavone, from the first column used for sample clean-up, the six-port valve was switched to the second column for analysis with UV detection. Detection of apigenin was precise and reproducible, with a limit of quantification of 10 ng ml−1 urine. Detection and quantification of acacetin was linear down to 70 ng ml−1 urine. The method has been successfully applied to determine the level of apigenin in 100 human urine samples from an intervention study with parsley.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号