首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有22条查询结果,搜索用时 970 毫秒
1.
Summary Earlier students of the origin of Lotus corniculatus suggested that this tetraploid species arose as an autotetraploid of the closely related diploid species L. tenuis or L. alpinus. More recent studies suggested that L. alpinus and L. japonicus could be ancestral forms. The present study of tannin content, phenolic content, cyanide production, morphology, cytogenetics, Rhizobium specificity and self-incompatibility in the corniculatus group virtually excludes the possibility that L. corniculatus could have arisen through autopolyploidy of L. tenuis or L. alpinus, and suggests that L. corniculatus arose through hybridization of L. alpinus and/or L. tenuis (probably as female parent) with L. uliginosus (probably as male parent), followed by chromosome doubling in the hybrid.  相似文献   
2.
Genetic divergence and hybrid speciation   总被引:3,自引:0,他引:3  
Although the evolutionary importance of natural hybridization has been debated for decades, it has become increasingly clear that hybridization plays a fundamental role in the evolution of many plant and animal taxa, sometimes resulting in the formation of entirely new species. Although some hybrid species retain the base chromosome number of their parents, others combine the full chromosomal complements of their progenitors. Hybrid speciation can thus produce two fundamentally different types of evolutionary lineages, yet relatively little is known about the factors influencing ploidy level in hybrid neospecies. We estimated genetic divergence between species pairs that have given rise to homoploid and polyploid hybrid species and found that divergence is significantly greater for the parents of polyploids, even after controlling for potentially confounding factors. Our data thus provide the first direct evidence in support of the notion that the extent of genomic divergence between hybridizing species influences the likelihood of diploid versus polyploid hybrid speciation.  相似文献   
3.
Variation in host-specific infectivity was studied in monogenean polystome parasites (Protopolystoma spp.) of the interfertile, parapatric anurans Xenopus laevis laevis and Xenopus muelleri. Laboratory-raised host F1 hybrids were resistant to parasites respectively specific to each parent taxon in nature. This resistance occurred against parasite isolates from both inside and outside a host hybrid/sympatric zone (and no isolate was compatible with the foreign host species under experimental conditions). Geographical Protopolystoma xenopodis isolates showed variable infectivity to a single full-sib group of their usual host, X. l. laevis, and strains with high or low infectivity to these sibs co-occurred in spatially distant local areas (separated by 1,700 km). The host compatibility of P. xenopodis was also subject to host genotypexparasite genotype interactions. Refractoriness to some parasites or pathogens, as a consequence of hybridisation, may have conferred a selective advantage on the allopolyploid pathway by which most Xenopus spp. are believed to have evolved.  相似文献   
4.
The origin of Hordelymus genome has been debated for years, and no consensus conclusion was reached. In this study, we sequenced and analyzed the RPB2 (RNA polymerase subunit II) gene from Hordelymus europaeus (L.) Harz, and its potential diploid ancestor species those were suggested in previous studies. The focus of this study was to examine the phylogenetic relationship of Hordelymus genomes with its potential donor Hordeum, Psathyrostachys, and Taeniatherum species. Two distinguishable copies of sequences were obtained from H. europaeus. The obvious difference between the two copies of sequences is a 24 bp indel (insertion/deletion). Phylogenetic analysis showed a strong affinity between Hordeum genome and Hordelymus with 85% bootstrap support. These results suggested that one genome in tetraploid H. europaeus closely related to the genome in Hordeum species. Another genome in H. europaeus is sister to the genomes in Triticeae species examined here, which corresponds well with the recently published EF-G data. No obvious relationship was found between Hordelymus and either Ta genome donor, Taeniatherum caput-medusae or Ns genome donor, Psathyrostachys juncea. Our data does not support the presence of Ta and Ns genome in H. europaeus, and further confirms that H. europaeus is allopolyploid.  相似文献   
5.
Tumbleweeds (Salsola species, section Kali) are road side and rangeland pest plants throughout the 48 contiguous states in the US. Three described tumbleweed species and two undescribed Salsola taxa occur in California. The known species are Russian thistle, Salsola tragus, introduced from Eurasia in the 1800s, Russian barbwire thistle, S. paulsenii, which grows in the desert regions of California, and is also native to Eurasia, and the recently identified S. kali subspecies austroafricana, possibly native to South Africa. Our goals were to investigate karyology, genome size, and molecular genetic affinities of the described species and the other taxa within their ranges in California using recently developed microsatellite loci, dominant nuclear DNA markers (RAPD and ISSR), and DNA sequence data. Chromosome counts and genome size assessments made with flow cytometry were compared. These analyses indicated that one undescribed taxon is a new allopolyploid hybrid between S. tragus and S. kali subspecies austroafricana, and the other undescribed taxon appears to be a complex hybrid involving all three described species. The invasion potentials for the hybrid taxa are unknown. Tumbleweeds are the focus of biological controls efforts but the identification of suitable agents for the hybrid taxa may be problematic because of the large amount of genetic variability encompassed within this evolving Salsola complex.  相似文献   
6.
为探讨异源多倍体基因组中直系同源基因的表达调控机制,对重亚硫酸盐测序PCR(BSP)技术进行了改进优化。结果表明,改进的BSP技术检测到萝卜-芥蓝四倍体及其亲本BZIP17同源基因启动子的甲基化水平为3.8%~18.8%,采用实时荧光定量PCR检测BZIP17基因的相对表达量,且BZIP17同源基因的表达调控与启动子甲基化等作用相关。因此,改进的BSP技术可应用到更多同源基因的甲基化检测中,以分析异源多倍体中同源基因的分子进化方式。  相似文献   
7.
为了解异源多倍体形成后,其剪接因子基因SR30在各组织器官间的表达量以及选择性剪接模式与亲本的差异,选取萝卜-芥蓝异源四倍体(Raphanobrassica)及其亲本萝卜(Raphanus sativus)、芥蓝(Brassica oleracea var.alboglabra)为材料,运用RACE-PCR方法克隆到全长的编码序列(CDS)和3非编码区(3 UTR),运用q RT-PCR和半定量RT-PCR检测其在各组织器官中的表达量和各转录本表达量间的差异。结果表明,四倍体中萝卜同源的Rs SR30基因有5种转录本,芥蓝同源的Bo SR30基因有4种转录本。同时,SR30在3物种中的表达具有组织器官的差异,且在四倍体中的总体表达量显著低于亲本。根据克隆到的转录本,预测Rs SR30编码3种蛋白,Bo SR30编码2种,不同蛋白异构体的区别体现在C末端的丝氨酸-精氨酸富集(RS)结构域。因此,萝卜-芥蓝异源多倍体形成后,SR30基因在表达量和转录本选择性剪接方面都发生了改变。  相似文献   
8.
9.
山羊草属异源多倍体物种核rDNA ITS区的进化   总被引:5,自引:0,他引:5  
本文测定了山羊草属Aegilops 3个组中异源多倍体物种的核rDNA ITS区序列,并用邻接法进行了聚类分析。结果表明,多倍体物种的ITS区序列长度为559∽606bp,其中ITS1、ITS2分别有变异位点51、42个,且存在多态位点。多倍体种均与各自的某一祖先种构成稳定分支,说明在杂交-多倍化后,这些多倍体的ITS区在同步进化的作用下已向着其某一祖先种的ITS区进化。对于sect.Vertebrata的异源多倍体物种来说,其ITS区主要向其祖先种Ae.umbellulata(UU)的ITS区进化,这与山羊草属的细胞遗传学研究结果基本一致。在sect.Cylindropyrum和sect.Polyeides中,Ae.cylindrica(CCDD)朝着Ae.caudata (CC)进化;Ae.ventricosa(DDMvMv)朝着Ae.comosa(MM)进化;Ae.vavilovii(DDMMSS)朝着Ae.crassa (DDMM)进化。  相似文献   
10.

Background

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.

Results

A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.

Conclusions

Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号