首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2012年   2篇
  2011年   2篇
  2002年   1篇
  1988年   1篇
排序方式: 共有22条查询结果,搜索用时 265 毫秒
1.
Energy transfer pathways between phycobiliproteins chromophores in the phycobilisome (PBS) core of the cyanobacterium Synechocystis sp. PCC 6803 were investigated. The computer 3D model of the PBS core with determination of chromophore to chromophore distance was created. Our kinetic equations based on this model allowed us to describe the relative intensities of the fluorescence emission of the short(peaked at 665 nm) and long-wavelength (peaked at 680 nm) chromophores in the PBS core at low and room temperatures. The difference of emissions of the PBS core at 77 and 293 K are due to the back energy transfer, which is observed at room temperature and is negligible at 77 K.  相似文献   
2.
Petioles from in vitro grown plants of interspecific grapevine hybrids cvs `Bianca', `Podarok Magaracha' and `Intervitis Magaracha' were cultured on solid NN medium supplemented with 2,4-D and BA at various concentrations. The callus developed was cultured in liquid NN medium supplemented with 0.5 mg l–1 BA to induce formation of somatic embryos. Somatic embryos of globular and heart-stage developed in suspensions of `Podarok Magaracha' and `Intervitis Magaracha'. In contrast, `Bianca' did not undergo embryogenesis beyond globular stage. This made it necessary to perform subculture of the suspensions to HTE liquid medium supplemented with 0.2 mg l–1 BA for the development of globular embryos into heart stage. Heart-stage embryos developed into torpedo-stage after subculturing suspensions of all three cultivars to liquid HTE medium supplemented with 0.1 mg l–1 IAA and 30 mg l–1 sodium hummate. Torpedo-stage embryo suspensions were subcultured in liquid HTE medium supplemented with 0.5 mg l–1 BA, 0.5 mg l–1 GA3 and 0.5 mg l–1 GA3 + 0.2 mg l–1 BA. After 12 days of incubation, plantlets were cultured on solid M2MS medium: without growth regulators and with 0.5 mg l–1 BA. Plantlets that developed in liquid HTE media with 0.5 mg l–1 GA3 or 0.5 mg l–1 GA3 + 0.2 mg l–1 BA produced 82–90% shoots on solid M2MS medium with 0.5 mg l–1 BA after 50 days of culture.  相似文献   
3.
Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.  相似文献   
4.
Using molecular modeling and known spatial structure of proteins, we have derived a universal 3D model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the process of non-photochemical PBS quenching. The characteristic tip of the phycobilin domain of the core-membrane linker polypeptide (LCM) forms the attachment site on the PBS core surface for interaction with the central inter-domain cavity of the OCP molecule. This spatial arrangement has to be the most advantageous one because the LCM, as the major terminal PBS-fluorescence emitter, accumulates energy from the most other phycobiliproteins within the PBS before quenching by OCP. In agreement with the constructed model, in cyanobacteria, the small fluorescence recovery protein is wedged in the OCP’s central cavity, weakening the PBS and OCP interaction. The presence of another one protein, the red carotenoid protein, in some cyanobacterial species, which also can interact with the PBS, also corresponds to this model.  相似文献   
5.

The photoswitchable orange carotenoid protein (OCP) is indispensable for cyanobacterial photoprotection by quenching phycobilisome fluorescence upon photoconversion from the orange OCPO to the red OCPR form. Cyanobacterial genomes frequently harbor, besides genes for orange carotenoid proteins (OCPs), several genes encoding homologs of OCP’s N- or C-terminal domains (NTD, CTD). Unlike the well-studied NTD homologs, called Red Carotenoid Proteins (RCPs), the role of CTD homologs remains elusive. We show how OCP can be reassembled from its functional domains. Expression of Synechocystis OCP-CTD in carotenoid-producing Escherichia coli yielded violet-colored proteins, which, upon mixing with the RCP-apoprotein, produced an orange-like photoswitchable form that further photoconverted into a species that quenches phycobilisome fluorescence and is spectroscopically indistinguishable from RCP, thus demonstrating a unique carotenoid shuttle mechanism. Spontaneous carotenoid transfer also occurs between canthaxanthin-coordinating OCP-CTD and the OCP apoprotein resulting in formation of photoactive OCP. The OCP-CTD itself is a novel, dimeric carotenoid-binding protein, which can coordinate canthaxanthin and zeaxanthin, effectively quenches singlet oxygen and interacts with the Fluorescence Recovery Protein. These findings assign physiological roles to the multitude of CTD homologs in cyanobacteria and explain the evolutionary process of OCP formation.

  相似文献   
6.
Photosynthesis Research - Phycobilisome (PBS) is a giant water-soluble photosynthetic antenna transferring the energy of absorbed light mainly to the...  相似文献   
7.
8.
The phycobilisome (PBS) is a giant highly-structured pigment-protein antenna of cyanobacteria and red algae. PBS is composed of the phycobiliproteins and several linker polypeptides. The large core-membrane linker protein (LCM or ApcE) influences many features and functions of PBS and consists of several domains including the chromophorylated PB-domain. Being homologous to the phycobiliprotein α-subunits this domain includes a so-called PB-loop insertion whose functions are still unknown. We have created the photoautotrophic mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with lacking PB-loop. Using various spectral techniques we have demonstrated that this mutation does not destroy the PBS integrity and the internal PBS excitation energy transfer pathways. At the same time, the deletion of the PB-loop leads to the decrease of connectivity between the PBS and thylakoid membrane and to the compensatory increase of the relative photosystem II content. Mutation provokes the violation of the thylakoid membranes arrangement, the inability to perform state transitions, and diminishing of the OCP-dependent non-photochemical PBS quenching. In essence, even such a minute mutation of the PBS polypeptide component, like the PB-loop deletion, becomes important for the concerted function of the photosynthetic apparatus.  相似文献   
9.
A model of lipid bilayer membrane in water has been developed. Parameters have been selected that allow molecular dynamics simulation of lipid bilayers in the all-atom approximation. The calculated indices of packing and mobility of lipid molecules for the liquid crystalline state of the bilayer agree well with the experimental data. Based on the model of the liquid crystalline state of the membrane, a system in the gel-like state has been constructed. The gel-state model reproduces well the packing of lipids in real bilayers, whereas the mobility of molecules proves to be overestimated.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号