首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  国内免费   1篇
  2021年   1篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有13条查询结果,搜索用时 890 毫秒
1.
2.
The delivery of Ca2+ into cells by CaV channels provides the trigger for many cellular actions, such as cardiac muscle contraction and neurotransmitter release. Thus, a full understanding of Ca2+ permeation through these channels is critical. Using whole-cell voltage-clamp recordings, we recently demonstrated that voltage modulates the apparent affinity of N-type (CaV2.2) channels for permeating Ca2+ and Ba2+ ions. While we took many steps to ensure the high fidelity of our recordings, problems can occur when CaV currents become large and fast, or when currents run down. Thus, we use here single channel recordings to further test the hypothesis that permeating ions interact with N-type channels in a voltage-dependent manner. We also examined L-type (CaV1.2) channels to determine if these channels also exhibit voltage-dependent permeation. Like our whole-cell data, we find that voltage modulates N-channel affinity for Ba2+ at voltages > 0 mV, but has little or no effect at voltages < 0 mV. Furthermore, we demonstrate that permeation through L-channel is also modulated by voltage. Thus, voltage-dependence may be a common feature of divalent cation permeation through CaV1 and CaV2 channels (i.e. high-voltage activated CaV channels). The voltage dependence of CaV1 channel permeation is likely a mechanism mediating sustained Ca2+ influx during the plateau phase of the cardiac action potential.  相似文献   
3.
Three of Malaysia’s endangered large mammal species are experiencing contrasting futures. Populations of the Sumatran rhino (Dicerorhinus sumatrensis) have dwindled to critically low numbers in Peninsular Malaysia (current estimates need to be revised) and the state of Sabah (less than 40 individuals estimated). In the latter region, a bold intervention involving the translocation of isolated rhinos is being developed to concentrate them into a protected area to improve reproduction success rates. For the Asian elephant (Elephas maximus), recently established baselines for Peninsular Malaysia (0.09 elephants/km2 estimated from one site) and Sabah (between 0.56 and 2.15 elephants/km2 estimated from four sites) seem to indicate globally significant populations based on dung count surveys. Similar surveys are required to monitor elephant population trends at these sites and to determine baselines elsewhere. The population status of the Malayan tiger (Panthera tigris jacksoni) in Peninsular Malaysia, however, remains uncertain as only a couple of scientifically defensible camera-trapping surveys (1.66 and 2.59 tigers/100 km2 estimated from two sites) have been conducted to date. As conservation resources are limited, it may be prudent to focus tiger monitoring and protection efforts in priority areas identified by the National Tiger Action Plan for Malaysia. Apart from reviewing the conservation status of rhinos, elephants and tigers and threats facing them, we highlight existing and novel conservation initiatives, policies and frameworks that can help secure the long-term future of these iconic species in Malaysia.  相似文献   
4.
Voltage-gated calcium channels(VGCCs) play critical roles in cardiac and skeletal muscle contractions,hormone and neurotransmitter release,as well as slower processes such as cell proliferation,differentiation,migration and death.Mutations in VGCCs lead to numerous cardiac,muscle and neurological disease,and their physiological function is tightly regulated by kinases,phosphatases,G-proteins,calmodulin and many other proteins.Fifteen years ago,RGK proteins were discovered as the most potent endogenous regulators of VGCCs.They are a family of monomeric GTPases(Rad,Rem,Rem2,and Gem/Kir),in the superfamily of Ras GTPases,and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs.Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition,the physiological impact of this inhibition,and recent evidence linking the two known RGK functions.  相似文献   
5.
Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked β-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3′UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.  相似文献   
6.
Voltage-gated calcium (CaV) channels deliver Ca2+ to trigger cellular functions ranging from cardiac muscle contraction to neurotransmitter release. The mechanism by which these channels select for Ca2+ over other cations is thought to involve multiple Ca2+-binding sites within the pore. Although the Ca2+ affinity and cation preference of these sites have been extensively investigated, the effect of voltage on these sites has not received the same attention. We used a neuronal preparation enriched for N-type calcium (CaV2.2) channels to investigate the effect of voltage on Ca2+ flux. We found that the EC50 for Ca2+ permeation increases from 13 mM at 0 mV to 240 mM at 60 mV, indicating that, during permeation, Ca2+ ions sense the electric field. These data were nicely reproduced using a three-binding-site step model. Using roscovitine to slow CaV2.2 channel deactivation, we extended these measurements to voltages <0 mV. Permeation was minimally affected at these hyperpolarized voltages, as was predicted by the model. As an independent test of voltage effects on permeation, we examined the Ca2+-Ba2+ anomalous mole fraction (MF) effect, which was both concentration and voltage dependent. However, the Ca2+-Ba2+ anomalous MF data could not be reproduced unless we added a fourth site to our model. Thus, Ca2+ permeation through CaV2.2 channels may require at least four Ca2+-binding sites. Finally, our results suggest that the high affinity of Ca2+ for the channel helps to enhance Ca2+ influx at depolarized voltages relative to other ions (e.g., Ba2+ or Na+), whereas the absence of voltage effects at negative potentials prevents Ca2+ from becoming a channel blocker. Both effects are needed to maximize Ca2+ influx over the voltages spanned by action potentials.  相似文献   
7.
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.  相似文献   
8.
9.
Dihydropyridines can affect L-type calcium channels (CaV1) as either agonists or antagonists. Seliciclib or R-roscovitine, a 2,6,9-trisubstituted purine, is a potent cyclin-dependent kinase inhibitor that induces both agonist and antagonist effects on CaV2 channels (N-, P/Q- and R-type). We studied the effects induced by various trisubstituted purines on CaV2.2 (N-type) channels to learn about chemical structure–function relationships. We found that S-roscovitine and R-roscovitine showed similar potency to inhibit, but agonist activity of S-roscovitine required at least a 20-fold higher concentration, suggesting stereospecificity of the agonist-binding site. The testing of other trisubstituted purines showed a correlation between CaV2.2 inhibition and cyclin-dependent kinase affinity that broke down after determining that a chemically unrelated inhibitor, kenpaullone, was a poor CaV2.2 inhibitor, and a kinase inactive analog (dimethylamino-olomoucine; DMAO) was a strong inhibitor, which together support a kinase independent effect. In fact, like dihydropyridine-induced L-channel inhibition, R-roscovitine left-shifted the closed-state inactivation versus voltage relationship, which suggests that inhibition results from CaV2 channels moving into the inactivated state. Trisubstituted purine antagonists could become clinically important drugs to treat diseases, such as heart failure and neuropathic pain that result from elevated CaV2 channel activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号