首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
排序方式: 共有22条查询结果,搜索用时 255 毫秒
1.
Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km2 of forest habitat was found to be only 21,290 km2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (F ST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status to corridors, use smart green infrastructure to mitigate development impacts, and restore habitats where connectivity has been lost.  相似文献   
2.
The length-weight relationships (LWRs) of six Nemacheilid species (Schistura chindwinica, S. fasciata, S. khugae, S. minuta, S. reticulata and S. rubrimaculata) have been analyzed. Fish samples were collected on quarterly basis from March 2018 to February 2019. Sampling was performed using cast nets (mesh size 5–10 mm; about 50 sq m area covered each time and water depth was 4 ft approx.), and electrofishing (Ultrasonic Inverter Electro Fisher, 24 volts, 4 m) in the day time. The total length (TL) of individual fish was measured to 0.1 cm with a digital caliper and body weights (BW) were measured to 0.001 g with digital electronic balances. The parameters for the LWR equations were calculated, and the respective statistics such as the 95% confidence interval for parameters “a” and “b” are provided as well as the coefficient of correlation. For five species a new maximum total length has been documented.  相似文献   
3.
An increased level of homocysteine, a reactive thiol amino acid, is associated with several complex disorders and is an independent risk factor for cardiovascular disease. A majority (>80%) of circulating homocysteine is protein bound. Homocysteine exclusively binds to protein cysteine residues via thiol disulfide exchange reaction, the mechanism of which has been reported. In contrast, homocysteine thiolactone, the cyclic thioester of homocysteine, is believed to exclusively bind to the primary amine group of lysine residue leading to N-homocysteinylation of proteins and hence studies on binding of homocysteine thiolactone to proteins thus far have only focused on N-homocysteinylation. Although it is known that homocysteine thiolactone can hydrolyze to homocysteine at physiological pH, surprisingly the extent of S-homocysteinylation during the exposure of homocysteine thiolactone with proteins has never been looked into. In this study, we clearly show that the hydrolysis of homocysteine thiolactone is pH dependent, and at physiological pH, 1 mM homocysteine thiolactone is hydrolysed to ~0.71 mM homocysteine within 24 h. Using albumin, we also show that incubation of HTL with albumin leads to a greater proportion of S-homocysteinylation (0.41 mol/mol of albumin) than N-homocysteinylation (0.14 mol/mol of albumin). S-homocysteinylation at Cys34 of HSA on treatment with homocysteine thiolactone was confirmed using LC-MS. Further, contrary to earlier reports, our results indicate that there is no cross talk between the cysteine attached to Cys34 of albumin and homocysteine attached to lysine residues.  相似文献   
4.
5.
6.
The chilli (Capsicum sp.) germplasm found throughout North Eastern (NE) India exhibits wide variability in fruit morphology, pungency, bearing habit and crop duration. As the genetic resources of chilli landraces from this region are not well documented, it is likely that they have hitherto unknown alleles and/or genes for economically important traits. In this study, 53 chilli accessions from different areas of this NE region were evaluated for genetic diversity using various morphological characters and 50 simple sequence repeat markers. It was found that erect and campanulate fruit types are grouped in separate clusters. The number of alleles per locus ranged from 3 to 9 with an average of 5.36. The average polymorphic information content value was 0.52. Percentage variation among populations, within individuals of population and within individuals was found to be 34, 57.9 and 8.05 %, respectively, indicating diversity in the landraces sampled. Allele mining across acyltransferase 3 (AT3) gene in a set of landraces led to identification of new single nucleotide polymorphisms (SNPs). Sequence analysis of the 2,349 bp AT3 region revealed the presence of a total of 79 SNPs and 3 indels. This overview of diversity of chilli landraces from NE India paves the way for conservation and utilisation of germplasm and contributes to the development of systematic breeding strategies.  相似文献   
7.
The great Indian bustard (Ardeotis nigriceps) is an endemic endangered bird of the Indian subcontinent with a declining population, as a result of hunting and continuing habitat loss. In this first genetic study of this little-known species, we investigate the diversity of the mitochondrial DNA (hypervariable control region II and cytochrome b gene) among samples (n = 63) from five states within the current distribution range of great Indian bustards in India. We find just three haplotypes defined by three variable sites, a comparatively low genetic diversity of π = 0.0021 ± 0.0012 for cytochrome b, 0.0008 ± 0.0007 for the control region (CR), and 0.0017 ± 0.0069 for combined regions and no phylogeographic structure between populations. We provide evidence for a bottleneck event, estimate an effective population size (Ne) that is roughly concordant with recent population size estimates based on field surveys (~200 to 400), but extremely low for a widely distributed species. We also discuss the conservation implications. Based on our findings, we strongly recommend upgrading the IUCN threat status from Endangered to Critically Endangered.  相似文献   
8.
9.
Cobalamin is an essential micronutrient in mammals. Deficiencies of this micronutrient have been implicated as risk factors for various complex diseases. Cobalamin is transported to the cells by the transport protein transcobalamin II (TCII), and hence genetic variations (like single nucleotide polymorphisms) in TCII could be perceived to affect the binding of cobalamin to TCII, thereby modulating the intracellular concentrations of cobalamin. To understand whether three nonsynonymous mutations in TCII (I5V, P241R, and R381Q) alter the structure of the protein which could potentially affect cobalamin binding, we performed molecular dynamics simulation in silico. Superimposition of active sites of the four simulated models (wild type and three variants) with the human TCII crystal structure revealed that the distance between the Nε nitrogen atom of His-173 and the cobalt ion of cobalamin deviated considerably in the I5V model as compared to wild type and other variants. His-173 directly coordinates with the cobalt ion of cobalamin. Further, from our dynamic cross-correlation and principal component analysis it appears that in the I5V model the β-domain moves apart from the α-domain creating a wide gap between the two domains. This might facilitate the initial binding of cobalamin in the I5V model as cobalamin enters the binding site through the gap between the two domains. These observations were not found in the other variants. We thus speculate that binding of cobalamin will be more facile in the I5V variant.  相似文献   
10.
An elevated level of homocysteine, a thiol-containing amino acid is associated with a wide spectrum of disease conditions. A majority (>80 %) of the circulating homocysteine exist in protein-bound form. Homocysteine can bind to free cysteine residues in the protein or could cleave accessible cysteine disulfide bonds via thiol disulfide exchange reaction. Binding of homocysteine to proteins could potentially alter the structure and/or function of the protein. To date only 21 proteins have been experimentally shown to bind homocysteine. In this study we attempted to identify other proteins that could potentially bind to homocysteine based on the criteria that such proteins will have significant 3D structural homology with the proteins that have been experimentally validated and have solvent accessible cysteine residues either with high dihedral strain energy (for cysteine–cysteine disulfide bonds) or low pKa (for free cysteine residues). This analysis led us to the identification of 78 such proteins of which 68 proteins had 154 solvent accessible disulfide cysteine pairs with high dihedral strain energy and 10 proteins had free cysteine residues with low pKa that could potentially bind to homocysteine. Further, protein–protein interaction network was built to identify the interacting partners of these putative homocysteine binding proteins. We found that the 21 experimentally validated proteins had 174 interacting partners while the 78 proteins identified in our analysis had 445 first interacting partners. These proteins are mainly involved in biological activities such as complement and coagulation pathway, focal adhesion, ECM-receptor, ErbB signalling and cancer pathways, etc. paralleling the disease-specific attributes associated with hyperhomocysteinemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号