首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2018年   1篇
  2014年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2008年   1篇
  1974年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
Understanding of fish genetic characterization plays a vital role in the conservation and utilization of fish genetic resources of grouper species. The present study was carried out to assess the genetic diversity and phylogenetic relationships in five grouper species, Epinephelus spp. from eastern Saudi Arabian coast using two molecular marker systems, inter simple sequence repeat (ISSR) and microsatellite (SSR) markers. In total, 219 individuals grouper specimens (Epinephelus tauvina, E. coioides, E. bleekeri, E. malabaricus, and E. areolatus) were genotyped with 10 ISSR and 11 SSR selected primers. The ISSR produced 94 DNA fragments, of which 44 were polymorphic with an average of 2.13 fragment per primer. While SSR primers generated 107 alleles, all of them were polymorphic with an average 9.72 per primer. ISSR and SSR techniques demonstrated a high level of gene diversity and genetic distances illustrated by UPGMA dendrograms among the grouper species. The results proved that the SSR markers were highly informative and efficient in detecting genetic variability and relationships of the Epinephelus spp.  相似文献   
3.
Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-β induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-β receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-β receptor 1, thus, preventing TGF-β-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-β-IRE1-XBP1 pathway.Subject terms: Endoplasmic reticulum, Apoptosis, End-stage renal disease, Preclinical research, Chronic inflammation  相似文献   
4.
5.
Cell therapy has proven to be a highly promising method in clinical applications, raising so much hope for the treatment of injured tissues with low, if any, self regeneration potential such as central and peripheral nervous system. Neurally induced bone marrow derived mesenchymal stem cells (NIMSCs) as well as olfactory ensheathing cells (OECs) were transplanted in a rat model of sub-acute spinal cord injury and the behavioral and histological analyses were conducted. A balloon-compression technique was used to produce an injury at T8-T9 level of spinal cord. After a week post injury, rats were injected with either NIMSCs or OECs at the center of developing lesion cavity, 3 mm cranial and 3 mm caudal to the cavity. Weekly behavioral assessment using BBB score was done over five-week period post transplantation and finally histological assessment was performed to locate labeled cells in the tissue in order to evaluate the reduction of cavity formation and axonal regeneration. Evaluation of locomotor performance showed significant behavioral improvement in NIMSC group over OEC and control groups. The histological analyses revealed the presence of transplanted cells in the spinal cord parenchyma. Volume of injured area that was occupied with syrinx cavity in NIMSC group was significantly less than control group. In addition, meanwhile neurofilament-positive axons significantly showed higher expression in rats receiving NIMSC compared to the other two groups. In conclusion NIMSC caused both behavioral and histological improvement that potentially makes them a promising candidate for cell therapy approaches of spinal cord injuries.  相似文献   
6.
Umbilical cord blood‐derived USSCs (unrestricted somatic stem cells) have recently been considered as a potential source for stem cell therapy and transplantation due to their characteristics such as easy accessibility, low immunogenicity, self‐renewing and multilineage differentiation potential. Stem cell homing is a key factor in successful transplantation, which is regulated by CXCR4 in stem cells. In this study, we evaluated the expression of CXCR4 in USSCs different passages. Moreover, the effect of VEGF (vascular endothelial growth factor) and IGF‐1 (insulin‐like growth factor 1) on its expression was assessed. It was shown that the expression of CXCR4 in USSCs decreased with the increase in passage number. It was also revealed that VEGF increased surface expression and mRNA level of CXCR4 in USSCs, while IGF‐1 decreased its expression. When VEGF and IGF‐1 were administered simultaneously, CXCR4 expression was increased, but the expression level was less than VEGF alone. Finally, it was shown that over‐expression of CXCR4 enhanced the migratory capacity of USSCs. The increase of CXCR4 expression, here caused by VEGF in USSCs, can improve the efficacy of stem cell therapy and transplantation after long‐term culture of stem cells before clinical use.  相似文献   
7.
The expression pattern and regulatory functions of microRNAs (miRNAs) are intensively investigated in various tissues, cell types and disorders. Differential miRNA expression signatures have been revealed in healthy and unhealthy tissues using high-throughput profiling methods. For further analyses of miRNA signatures in biological samples, we describe here a simple and efficient method to detect multiple miRNAs simultaneously in total RNA. The size-coded ligation-mediated polymerase chain reaction (SL-PCR) method is based on size-coded DNA probe hybridization in solution, followed-by ligation, PCR amplification and gel fractionation. The new method shows quantitative and specific detection of miRNAs. We profiled miRNAs of the let-7 family in a number of organisms, tissues and cell types and the results correspond with their incidence in the genome and reported expression levels. Finally, SL-PCR detected let-7 expression changes in human embryonic stem cells as they differentiate to neuron and also in young and aged mice brain and bone marrow. We conclude that the method can efficiently reveal miRNA signatures in a range of biological samples.  相似文献   
8.
9.
Molecular Diagnosis & Therapy - Lupus nephritis (LN) is a kidney disease caused by systemic lupus erythematosus in which kidneys are attacked by the immune system. So far, various...  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号