首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2007年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
2.
Growing evidence supports the theory that mitochondrial dysfunction is an underlying cause of intramyocellular lipid (IMCL) accumulation and insulin resistance. Here, we hypothesized that high dietary fat (HF) intake could trigger changes in mitochondrial activity such that fatty acid oxidation is impaired in muscle and contributes to an elevation in intramyocellular lipid (IMCL) levels. Muscle mitochondrial activity was determined in vivo through measurement of the F(1)F(0) ATP synthase flux, the terminal step in the oxidative phosphorylation process. An initial study comparing rats on normal chow diet with rats on an HF diet revealed strong correlations between muscle ATP synthesis rates, IMCL levels and whole body glucose tolerance. Results obtained from two latter studies showed multiphasic responses to dietary intervention. Initially, the ATP synthesis rates decreased as much as 50% within 24 h of raising the fat content in the diet to 60% of the caloric intake. These rates eventually returned to normal values after 2-3 wk on the HF regimen, seemingly to prevent further IMCL accumulation. Only beyond 1 mo on the HF diet did results consistently show ATP synthesis rates to diminish by 30-50% accompanied by steadily augmenting IMCL levels. Interestingly, switching back to a chow diet after 3 wk of HF feeding reversed the initial diet-induced changes. Although the muscle mitochondrial system may initially offer enough compliance to counteract lipid surplus, these in vivo data suggest a vicious long-term cycle among mitochondrial dysfunction, IMCL accumulation, and glucose intolerance in the rat.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号