首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   6篇
  2021年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
2.
3.
4.

Background  

We have previously set up an in vitro mesenchymal-epithelial cell co-culture model which mimics the intestinal crypt villus axis biology in terms of epithelial cell differentiation. In this model the fibroblast-induced epithelial cell differentiation from secretory crypt cells to absorptive enterocytes is mediated via transforming growth factor-β (TGF-β), the major inhibitory regulator of epithelial cell proliferation known to induce differentiation in intestinal epithelial cells. The aim of this study was to identify novel genes whose products would play a role in this TGF-β-induced differentiation.  相似文献   
5.
We aimed to verify a custom virtual fields method (VFM) to estimate the patient-specific biomechanical properties of human optic nerve head (ONH) tissues, given their full-field deformations induced by intraocular pressure (IOP). To verify the accuracy of VFM, we first generated ‘artificial’ ONH displacements from predetermined (known) ONH tissue biomechanical properties using finite element analysis. Using such deformations, if we are able to match back the known biomechanical properties, it would indicate that our VFM technique is accurate. The peripapillary sclera was assumed anisotropic hyperelastic, while all other ONH tissues were considered isotropic. The simulated ONH displacements were fed into the VFM algorithm to extract back the biomechanical properties. The robustness of VFM was also tested against rigid body motions and noise added to the simulated displacements. Then, the computational speed of VFM was compared to that of a gold-standard stiffness measurement method (inverse finite element method or IFEM). Finally, as proof of principle, VFM was applied to IOP-induced ONH deformation data (obtained from one subject’s eye imaged with OCT), and the biomechanical properties of the prelamina and lamina cribrosa (LC) were extracted. From given ONH displacements, VFM successfully matched back the biomechanical properties of ONH tissues with high accuracy and efficiency. For all parameters, the percentage errors were less than 0.05%. Our method was insensitive to rigid body motions and was also able to recover the material parameters in the presence of noise. VFM was also found 125 times faster than the gold-standard IFEM. Finally, the estimated shear modulus for the prelamina and the LC of the studied subject’s eye were 33.7 and 63.5 kPa, respectively. VFM may be capable of measuring the biomechanical properties of ONH tissues with high speed and accuracy. It has potential in identifying patient-specific ONH biomechanical properties in the clinic if combined with optical coherence tomography.  相似文献   
6.
BackgroundReports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb.

Methods and Results

Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation.

Conclusions and Significance

This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.  相似文献   
7.
In order to identify pathogenic correlates of refractory rheumatoid arthritis (RA), antibodies against anti-cyclic citrullinated protein (ACPAs) were investigated in RA patients in whom the dysregulated immune system had been ablated by high-dose chemotherapy (HDC) and autologous haematopoietic stem cell transplantation (HSCT). Six patients with refractory RA were extensively characterized in terms of levels of total immunoglobulins, RA-specific autoantibodies (ACPAs and rheumatoid factor) and antibodies against rubella, tetanus toxoid (TT) and phosphorylcholine before and after HDC plus HSCT. Additionally, the avidity of ACPAs was measured before and after treatment and compared with the avidity of TT antibodies following repeated immunizations. Synovial biopsies were obtained by arthroscopy before HDC plus HSCT, and analyzed by immunohistochemistry. In the three patients with clinically long-lasting responses to HDC plus HSCT (median 423 days), significant reductions in ACPA-IgG levels after therapy were observed (median level dropped from 215 to 34 arbitrary units/ml; P = 0.05). In contrast, stable ACPA-IgG levels were observed in three patients who relapsed shortly after HDC plus HSCT (median of 67 days). Clinical responders had ACPA-IgG of lower avidity (r = 0.75; P = 0.08) and higher degree of inflammation histologically (r = 0.73; P = 0.09). Relapse (after 38 to 530 days) in all patients was preceded by rising levels of low avidity ACPA-IgG (after 30 to 388 days), in contrast to the stable titres of high avidity TT antibodies. In conclusion, humoral autoimmune responses were differentially modulated by immunoablative therapy in patients with synovial inflammation and low avidity ACPA-IgG autoantibodies as compared with patients with high levels of high avidity ACPA-IgG. The distinct clinical disease course after immunoablative therapy based on levels and avidity of ACPA-IgG indicates that refractory RA is not a single disease entity.  相似文献   
8.
The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h–1 mg–1 protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.  相似文献   
9.

Background  

The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis.  相似文献   
10.

Background  

Many protein interactions, especially those involved in signaling, involve short linear motifs consisting of 5-10 amino acid residues that interact with modular protein domains such as the SH3 binding domains and the kinase catalytic domains. One straightforward way of identifying these interactions is by scanning for matches to the motif against all the sequences in a target proteome. However, predicting domain targets by motif sequence alone without considering other genomic and structural information has been shown to be lacking in accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号