首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref=15 °C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P<0.001, n=104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio‐temporal variability of RECO, explaining >70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.  相似文献   
3.
Agroforestry systems may play a critical role in reducing the vulnerability of farmers' livelihood to droughts as tree‐based systems provide several mechanisms that can mitigate the impacts from extreme weather events. Here, we use a replicated throughfall reduction experiment to study the drought response of a cacao/Gliricidia stand over a 13‐month period. Soil water content was successfully reduced down to a soil depth of at least 2.5 m. Contrary to our expectations we measured only relatively small nonsignificant changes in cacao (?11%) and Gliricidia (?12%) sap flux densities, cacao leaf litterfall (+8%), Gliricidia leaf litterfall (?2%), soil carbon dioxide efflux (?14%), and cacao yield (?10%) during roof closure. However, cacao bean yield in roof plots was substantially lower (?45%) compared with control plots during the main harvest following the period when soil water content was lowest. This indicates that cacao bean yield was more sensitive to drought than other ecosystem functions. We found evidence in this agroforest that there is complementary use of soil water resources through vertical partitioning of water uptake between cacao and Gliricidia. This, in combination with acclimation may have helped cacao trees to cope with the induced drought. Cacao agroforests may thus play an important role as a drought‐tolerant land use in those (sub‐) tropical regions where the frequency and severity of droughts is projected to increase.  相似文献   
4.
1. The River Durance, the last alpine tributary of the River Rhône, is a large, braided alluvial hydrosystem. Following large-scale regulation, flow downstream of the Serre-Ponçon dam has been maintained at 1/40th of previous annual mean discharge. To assess the effects of historical disturbances, fish assemblages and habitat use were analysed during five summers in a representative reach of the middle Durance.
2. Habitat availability and use were assessed with a multi-scale approach including the variables water depth, current velocity, roughness height of substratum, amount of woody debris and lateral/longitudinal location. Eighteen fish species were sampled by electrofishing in 289 habitat sample units.
3. Partial least square (PLS) regression showed that taxa were mainly distributed according to relationships between their total length and water depth/velocity variables. Fish assemblage composition was also related to roughness height as well as distance from the bank or to the nearest large woody debris. However, PLS regression revealed no significant differences in habitat selection between two periods of varying hydromorphological stability.
4. Fish distribution patterns and density were related to proximity to the bank and cover, indicating that local scale variables need to be considered in conservation and restoration programmes.  相似文献   
5.
Soil CO2 efflux was measured in clear‐cut and intact plots in order to quantify the impact of harvest on soil respiration in an intensively managed Eucalyptus plantation, and to evaluate the increase in heterotrophic component of soil respiration because of the decomposition of harvest residues. Soil CO2 effluxes showed a pronounced seasonal trend, which was well related to the pattern of precipitation and soil water content and were always significantly lower in the clear‐cut plots than in the intact plots. On an annual basis, soil respiration represented 1.57 and 0.91 kgC m?2 yr?1 in intact and clear‐cut plots, respectively. During the first year following harvest, residues have lost 0.79 kgC m?2 yr?1. Our estimate of heterotrophic respiration was calculated assuming that it was similar to soil respiration in the clear‐cut area except that the decomposition of residues did not occur, and it was further corrected for differences in soil water content between intact and clear‐cut plots and for the cessation of leaf and fine root turnover in clear cut. Heterotrophic respiration in clear‐cut plots was estimated at 1.18 kgC m?2 yr?1 whereas it was only 0.65 kgC m?2 yr?1 in intact plots (41% of soil respiration). Assumptions and uncertainties with these calculations are discussed.  相似文献   
6.
The evolution of viviparity in squamates has been the focus of much scientific attention in previous years. In particular, the possibility of the transition from viviparity back to oviparity has been the subject of a vigorous debate. Some studies have suggested this reversal is more frequent than previously thought. However, none of them provide conclusive evidence. We investigated this problem by studying the phylogenetic relationships between oviparous and viviparous lineages of the reproductively bimodal lizard species Zootoca vivipara . Our results show that viviparous populations are not monophyletic, and that several evolutionary transitions in parity mode have occurred. The most parsimonious scenario involves a single origin of viviparity followed by a reversal back to oviparity. This is the first study with a strongly supported phylogenetic framework supporting a transition from viviparity to oviparity.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 1–11.  相似文献   
7.
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K‐deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates.  相似文献   
8.
Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from Ω decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr−1, but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr−1) is considered in discussion on the use of flux data to validate and interpolate models.  相似文献   
9.
The Anolis roquet series of Caribbean lizards provides natural replicates with which to examine the role of historical contingency and ecological determinism in shaping evolutionary patterns. Here, we describe 10 polymorphic tetranucleotide microsatellites to facilitate studies on population differentiation and gene flow. All loci successfully amplified in several species from this series. Genotyping 96 individuals from two A. roquet populations demonstrated the markers’ suitability as population genetic markers: genetic diversity was high (9–22 alleles per locus); there were no instances of linkage disequilibrium; and, with one exception, all genotypic frequencies conformed to Hardy–Weinberg equilibrium expectations.  相似文献   
10.
Populations of the Caribbean lizard, Anolis roquet, are thought to have experienced long periods of allopatry before recent secondary contact. To elucidate the effects of past allopatry on population divergence in A. roquet, we surveyed parallel transects across a secondary contact zone in northeastern Martinique. We used diagnostic molecular mitochondrial DNA markers to test fine‐scale association of mitochondrial DNA lineage and geological region, multivariate statistical techniques to explore quantitative trait pattern, and cline fitting techniques to model trait variation across the zone of secondary contact. We found that lineages were strongly associated with geological regions along both transects, but quantitative trait patterns were remarkably different. Patterns of morphological and mitochondrial DNA variation were consistent with a strong barrier to gene flow on the coast, whereas there were no indications of barriers to gene flow in the transitional forest. Hence, the coastal populations behaved as would be predicted by an allopatric model of divergence in this complex, while those in the transitional forest did not, despite the close proximity of the transects and their shared geological history. Patterns of geographical variation in this species complex, together with environmental data, suggest that on balance, selection regimes on either side of the secondary contact zone in the transitional forest may be more convergent, while those either side of the secondary contact zone on the coast are more divergent. Hence, the evolutionary consequences of allopatry may be strongly influenced by local natural selection regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号