首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222639篇
  免费   20000篇
  国内免费   18790篇
  2023年   2360篇
  2022年   2986篇
  2021年   9065篇
  2020年   6832篇
  2019年   8475篇
  2018年   8255篇
  2017年   6160篇
  2016年   8727篇
  2015年   12897篇
  2014年   15293篇
  2013年   16648篇
  2012年   20144篇
  2011年   18619篇
  2010年   11769篇
  2009年   10419篇
  2008年   12495篇
  2007年   11315篇
  2006年   10046篇
  2005年   8391篇
  2004年   7278篇
  2003年   6539篇
  2002年   5807篇
  2001年   4886篇
  2000年   4479篇
  1999年   4217篇
  1998年   2443篇
  1997年   2329篇
  1996年   2321篇
  1995年   2059篇
  1994年   1955篇
  1993年   1487篇
  1992年   2234篇
  1991年   1760篇
  1990年   1485篇
  1989年   1349篇
  1988年   1057篇
  1987年   931篇
  1986年   799篇
  1985年   804篇
  1984年   539篇
  1983年   490篇
  1982年   335篇
  1981年   275篇
  1980年   213篇
  1979年   314篇
  1978年   205篇
  1977年   210篇
  1976年   194篇
  1975年   227篇
  1974年   243篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
6.
7.
8.
9.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   
10.
Enzymatically active human testis angiotensin-converting enzyme (ACE) was expressed in Chinese hamster ovary (CHO) cells stably transfected with each of three vectors: p omega-ACE contains a full-length testis ACE cDNA under the control of a retroviral promoter; and pLEN-ACEVII and pLEN-ACE6/5, in which full-length and membrane anchor-minus testis ACE cDNAs, respectively, are under the control of the human metallothionein IIA promoter and SV40 enhancer. In every case, active recombinant human testis ACE (hTACE) was secreted in a soluble form into the culture media, up to 2.4 mg/liter in the media of metal-induced, high-producing clones transfected with one of the pLEN vectors. In addition, membrane-bound recombinant enzyme was recovered from detergent extracts of cell pellets of CHO cells transfected with either p omega-ACE or pLEN-ACE-VII. Recombinant converting enzyme was purified to homogeneity by single-step affinity chromatography of conditioned media and detergent-extracted cell pellets in 85 and 70% overall yield, respectively. Purified hTACE from all sources comigrated with the native testis isozyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with M(r) approximately 100 kDa. The native and recombinant proteins cross-reacted equally with anti-human kidney ACE antiserum on Western blotting. The catalytic activity of recombinant angiotensin-converting enzyme, in terms of angiotensin I and 2-furanacryloyl-Phe-Gly-Gly hydrolysis, chloride activation, and lisinopril inhibition, was essentially identical to that of the native enzyme. The facile recovery in high yield of fully active hTACE from the media of stably transfected CHO cells provides a suitable system for investigating structure-function relationships in this enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号