首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
  国内免费   9篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   13篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有67条查询结果,搜索用时 607 毫秒
1.
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in eukaryotic cells that directly regulates abundance of plasma membrane proteins. Clathrin triskelia are composed of clathrin heavy chains (CHCs) and light chains (CLCs), and the phytohormone auxin differentially regulates membrane-associated CLCs and CHCs, modulating the endocytosis and therefore the distribution of auxin efflux transporter PIN-FORMED2 (PIN2). However, the molecular mechanisms by which auxin regulates clathrin are still poorly understood. Transmembrane kinase (TMKs) family proteins are considered to contribute to auxin signaling and plant development; it remains unclear whether they are involved in PIN transport by CME. We assessed TMKs involvement in the regulation of clathrin by auxin, using genetic, pharmacological, and cytological approaches including live-cell imaging and immunofluorescence. In tmk1 mutant seedlings, auxin failed to rapidly regulate abundance of both CHC and CLC and to inhibit PIN2 endocytosis, leading to an impaired asymmetric distribution of PIN2 and therefore auxin. Furthermore, TMK3 and TMK4 were shown not to be involved in regulation of clathrin by auxin. In summary, TMK1 is essential for auxin-regulated clathrin recruitment and CME. TMK1 therefore plays a critical role in the establishment of an asymmetric distribution of PIN2 and an auxin gradient during root gravitropism.  相似文献   
2.
3.
Caenorhabditis elegans is a leading model organism for studying the basic mechanisms of aging. Progress has been limited, however, by the lack of an automated system for quantitative analysis of longevity and mean lifespan. To address this barrier, we developed ‘WormFarm’, an integrated microfluidic device for culturing nematodes. Cohorts of 30–50 animals are maintained throughout their lifespan in each of eight separate chambers on a single WormFarm polydimethylsiloxane chip. Design features allow for automated removal of progeny and efficient control of environmental conditions. In addition, we have developed computational algorithms for automated analysis of video footage to quantitate survival and other phenotypes, such as body size and motility. As proof‐of‐principle, we show here that WormFarm successfully recapitulates survival data obtained from a standard plate‐based assay for both RNAi‐mediated and dietary‐induced changes in lifespan. Further, using a fluorescent reporter in conjunction with WormFarm, we report an age‐associated decrease in fluorescent intensity of GFP in transgenic worms expressing GFP tagged with a mitochondrial import signal under the control of the myo‐3 promoter. This marker may therefore serve as a useful biomarker of biological age and aging rate.  相似文献   
4.
Melatonin is reportedly associated with intervertebral disc degeneration (IDD). Endplate cartilage is vitally important to intervertebral discs in physiological and pathological conditions. However, the effects and mechanism of melatonin on endplate chondrocytes (EPCs) are still unclear. Herein, we studied the effects of melatonin on EPC apoptosis and calcification and elucidated the underlying mechanism. Our study revealed that melatonin treatment decreases the incidence of apoptosis and inhibits EPC calcification in a dose‐dependent manner. We also found that melatonin upregulates Sirt1 expression and activity and promotes autophagy in EPCs. Autophagy inhibition by 3‐methyladenine reversed the protective effect of melatonin on apoptosis and calcification, while the Sirt1 inhibitor EX‐527 suppressed melatonin‐induced autophagy and the protective effects of melatonin against apoptosis and calcification, indicating that the beneficial effects of melatonin in EPCs are mediated through the Sirt1‐autophagy pathway. Furthermore, melatonin may ameliorate IDD in vivo in rats. Collectively, this study revealed that melatonin reduces EPC apoptosis and calcification and that the underlying mechanism may be related to Sirt1‐autophagy pathway regulation, which may help us better understand the association between melatonin and IDD.  相似文献   
5.
Li  Nan  Shi  Hangyu  Hou  Pengfei  Gao  Lu  Shi  Yongqiang  Mi  Weiyang  Zhang  Gang  Wang  Ning  Dai  Wei  Wei  Lin  Jin  Tianbo  Shi  Yongzhi  Guo  Shiwen 《Functional & integrative genomics》2022,22(1):27-33
Functional & Integrative Genomics - This study ascertained to explore the potential contribution of ARRDC3 polymorphisms in the risk and prognosis of glioma. One thousand sixty-one patients and...  相似文献   
6.
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.  相似文献   
7.
Very little is known about the metabolism of phospholipids in the G2 and M phases of the cell cycle, but limited studies have led to the postulation that phospholipid synthesis ceases during this period. To investigate whether phospholipids are synthesized in the G2/M phase of the cell cycle, protocols were developed to produce synchronized MCF-7 cell populations with greater than 80% of the cells in G1/S or G2/M phases that moved in synchrony following removal of the blocking agent. Analysis of the activities of key phosphatidylcholine and phosphatidylethanolamine biosynthetic enzymes in subcellular fractions obtained from MCF-7 cells at different cell cycle phases revealed that there was robust activity of key enzymes in the fractions prepared from MCF-7 cells in G2/M phase. Radiolabeled choline and ethanolamine were rapidly incorporated into cells maintained at G2/M phase with nocodazole, and the rates of incorporation were similar to those obtained in cells allowed to progress into the G1 phase. Furthermore, radiolabeled glycerol was incorporated into phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine and phosphatidic acid in MCF-7 cells maintained at G2/M phase with nocodazole. Similar results were obtained in CHO cells. These results demonstrate that glycerophospholipid synthesis is very active in the G2/M phase of these cells. Therefore, the postulated cessation of phospholipid synthesis in G2/M phases is not applicable to all cell types.  相似文献   
8.
Aging is associated with many complex diseases. Reliable prediction of the aging process is important for assessing the risks of aging-associated diseases. However, despite intense research, so far there is no reliable aging marker. Here we addressed this problem by examining whether human 3D facial imaging features could be used as reliable aging markers. We collected > 300 3D human facial images and blood profiles well-distributed across ages of 17 to 77 years. By analyzing the morphological profiles, we generated the first comprehensive map of the aging human facial phenome. We identified quantitative facial features, such as eye slopes, highly associated with age. We constructed a robust age predictor and found that on average people of the same chronological age differ by ± 6 years in facial age, with the deviations increasing after age 40. Using this predictor, we identified slow and fast agers that are significantly supported by levels of health indicators. Despite a close relationship between facial morphological features and health indicators in the blood, facial features are more reliable aging biomarkers than blood profiles and can better reflect the general health status than chronological age.  相似文献   
9.
Although it is known that tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10/TRAIL) induces autophagy, the mechanism by which autophagy is activated by TNFSF10 is still elusive. In this report, we show evidence that TRAF2- and RIPK1-mediated MAPK8/JNK activation is required for TNFSF10-induced cytoprotective autophagy. TNFSF10 activated autophagy rapidly in cancer cell lines derived from lung, bladder and prostate tumors. Blocking autophagy with either pharmacological inhibitors or siRNAs targeting the key autophagy factors BECN1/Beclin 1 or ATG7 effectively increased TNFSF10-induced apoptotic cytotoxicity, substantiating a cytoprotective role for TNFSF10-induced autophagy. Blocking MAPK8 but not NFκB effectively blocked autophagy, suggesting that MAPK8 is the main pathway for TNFSF10-induced autophagy. In addition, blocking MAPK8 effectively inhibited degradation of BCL2L1/Bcl-xL and reduction of the autophagy-suppressing BCL2L1–BECN1complex. Knockdown of TRAF2 or RIPK1 effectively suppressed TNFSF10-induced MAPK8 activation and autophagy. Furthermore, suppressing autophagy inhibited expression of antiapoptosis factors BIRC2/cIAP1, BIRC3/cIAP2, XIAP and CFLAR/c-FLIP and increased the formation of TNFSF10-induced death-inducing signaling complex (DISC). These results reveal a critical role for the MAPK8 activation pathway through TRAF2 and RIPK1 for TNFSF10-induced autophagy that blunts apoptosis in cancer cells. Thus, suppression of MAPK8-mediated autophagy could be utilized for sensitizing cancer cells to therapy with TNFSF10.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号