首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  2021年   2篇
  2020年   1篇
  2017年   1篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   2篇
  2007年   2篇
  2005年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1989年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有51条查询结果,搜索用时 296 毫秒
1.
Aedes aegypti spermatocytes were reconstructed from electron micrographs. The species has tight somatic pairing of the chromosomes, and there are therefore no classical leptotene and zygotene stages, but rather a gradual transition from somatic pairing to meiotic pairing (= pachytene). The term prepachytene has been used for the transitory stage. The first visible sign of impending meiosis was a reorganization of the chromatin, which resulted in the formation of spaces (synaptic spaces) in the chromatin, about the width of the synaptonemal complexes (SCs). Diffuse material, possibly precursor material for the SC, was present in the spaces. Later short pieces of complex were formed throughout the nucleus. Late prepachytene, pachytene, and diplotene complexes were reconstructed. Each chromosome occupied a separate region of the nucleus. The complexes became progressively shorter from prepachytene (maximum complement length 289 m) to diplotene (175 m). The thickness of the SCs increased from prepachytene to pachytene and probably decreased again during diplotene. At the beginning of diplotene the lateral elements (LEs) separated, and the single LEs became two to three times thicker than the LEs of the SC. The centromeres were at all stages attached to the nuclear membrane, whereas the telomeres were free in the nucleoplasm during pachytene and diplotene. A heterochromatic marker was present on chromosome 1 near the sex determining locus, and a diffuse marker on chromosome 3 near the nucleolus organizer region. After breakdown of the complexes, polycomplexes were present in the nucleus.  相似文献   
2.
A stable, dicentric human chromosome, which is known from light microscopy to show a 50:50 distribution between monocentric/dicentric appearance, was examined by conventional electron microscopy and after labelling the centromere with anticentromere antibodies from CREST serum. Both centromeres of the chromosome developed kinetochores whether in monocentric or dicentric configuration. The eight monocentrics observed had all developed kinetochores at the centromere outside the constriction; at least six of them also had kinetochores at the centromere in the constriction. The dicentrics from glutaraldehyde fixed cells had spindle microtubules attached to both kinetochore sets irrespective of monocentric/dicentric configuration. The chromosome thus appeared to use both centromeres, either equally or with one serving a chromatid adhesion function while the second was used for transport along the spindle.  相似文献   
3.
4.
Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc‐type O‐glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc‐transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O‐glycosylation (SimpleCells) that enables proteome‐wide discovery of O‐glycan sites using ‘bottom‐up’ ETD‐based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O‐glycoproteome with almost 3000 glycosites in over 600 O‐glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O‐glycosylation. The finding of unique subsets of O‐glycoproteins in each cell line provides evidence that the O‐glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O‐glycoproteome should facilitate the exploration of how site‐specific O‐glycosylation regulates protein function.  相似文献   
5.
Glycosphingolipids (GSL) are glycosylated polar lipids in cell membranes essential for development of vertebrates as well as Drosophila. Mutants that impair enzymes involved in biosynthesis of GSL sugar chains provide a means to assess the functions of the sugar chains in vivo. The Drosophila glycosyltransferases Egghead and Brainiac are responsible for the 2nd and 3rd steps of GSL sugar chain elongation. Mutants lacking these enzymes are lethal and the nature of the defects that occur has suggested that GSL might impact on signaling by the Notch and EGFR pathways. Here we report on characterization of enzymes involved in the 4th and 5th steps of GSL sugar chain elongation in vitro and explore the biological consequences of removing the enzymes involved in step 4 in vivo. Two beta4-N-Acetylgalactosyltransferase enzymes can carry out step 4 (beta4GalNAcTA and beta4GalNAcTB), and while they may have overlapping activity, the mutants produce distinct phenotypes. The beta4GalNAcTA mutant displays behavioral defects, which are also observed in viable brainiac mutants, suggesting that proper locomotion and coordination primarily depend on GSL elongation. beta4GalNAcTB mutant animal shows ventralization of ovarian follicle cells, which is caused by defective EGFR signaling between the oocyte and the dorsal follicle cells to specify dorsal fate. GSL sequentially elongated by Egh, Brn and beta4GalNAcTB in the oocyte contribute to this signaling pathway. Despite the similar enzymatic activity, we provide evidence that the two enzymes are not functionally redundant in vivo, but direct distinct developmental functions of GSL.  相似文献   
6.
In this study we present a method for determination of O-glycosylation sites in glycopeptides, based on partial vapor-phase acid hydrolysis in combination with mass spectrometric analysis. Pentafluoropropionic acid and hydrochloric acid were used for the hydrolysis of glycosylated peptides. The reaction conditions were optimized for efficient polypeptide backbone cleavages with minimal cleavage of glycosidic bonds. The glycosylated residues were identified by mass spectrometric analysis of the hydrolytic cleavage products. Although glycosidic bonds are partially cleaved under acid hydrolysis, the resulting mass spectra allowed unambiguous determination of the glycosylation sites. Examples are shown with mannosyl- and mucin-type glycopeptides. Performing the hydrolysis in vapor eliminates the risk for contamination of the sample with impurities from the reagents, thus allowing analysis of the reaction products without further purification both by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry.  相似文献   
7.
The neurogenic Drosophila genes brainiac and egghead are essential for epithelial development in the embryo and in oogenesis. Analysis of egghead and brainiac mutants has led to the suggestion that the two genes function in a common signaling pathway. Recently, brainiac was shown to encode a UDP-N-acetylglucosamine:beta Man beta 1,3-N-acetylglucosaminyltransferase (beta 3GlcNAc-transferase) tentatively assigned a key role in biosynthesis of arthroseries glycosphingolipids and forming the trihexosylceramide, GlcNAc beta 1-3Man beta 1-4Glc beta 1-1Cer. In the present study we demonstrate that egghead encodes a Golgi-located GDP-mannose:beta Glc beta 1,4-mannosyltransferase tentatively assigned a biosynthetic role to form the precursor arthroseries glycosphingolipid substrate for Brainiac, Man beta 1-4Glc beta 1-1Cer. Egghead is unique among eukaryotic glycosyltransferase genes in that homologous genes are limited to invertebrates, which correlates with the exclusive existence of arthroseries glycolipids in invertebrates. We propose that brainiac and egghead function in a common biosynthetic pathway and that inactivating mutations in either lead to sufficiently early termination of glycolipid biosynthesis to inactivate essential functions mediated by glycosphingolipids.  相似文献   
8.
9.

Introduction  

Monocytes/macrophages accumulate in the rheumatoid (RA) synovium where they play a central role in inflammation and joint destruction. Identification of molecules involved in their accumulation and differentiation is important to inform therapeutic strategies. This study investigated the expression and function of chemokine receptor CCR9 in the peripheral blood (PB) and synovium of RA, non-RA patients and healthy volunteers.  相似文献   
10.
The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect by traditional methods. Here we present a method for fast, sensitive and simple indel detection that accurately defines indel sizes down to ±1 bp. The method coined IDAA for Indel Detection by Amplicon Analysis is based on tri-primer amplicon labelling and DNA capillary electrophoresis detection, and IDAA is amenable for high throughput analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号