首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2015年   2篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 12 毫秒
1
1.
Wirth  C.  Schulze  E.-D.  Lühker  B.  Grigoriev  S.  Siry  M.  Hardes  G.  Ziegler  W.  Backor  M.  Bauer  G.  Vygodskaya  N.N. 《Plant and Soil》2002,242(1):41-63
Effects of fire and site type on carbon (C) and nitrogen (N) balances were determined by following the change of total and component C and N pools along four chronosequences of fire-prone Siberian Scots pine ecosystems. These differed in the mean return interval of surface fires (unburned – moderately burned, 40 years – heavily burned, 25 years) and site quality (lichen versus Vaccinium site type). Of the Vaccinium site type (higher site quality) only a moderately burned chronosequence was studied. A total of 22 even-aged stands were investigated with stand ages ranging from 2 to 383 years. The C balance was dominated by the opposing dynamics of coarse woody debris (CWD) and biomass and could be divided into three phases: (1) Young stands (up to 40 years)acted as a net source for C of 6-10 mol C m-2 year-1 because the previous generation CWD pool originating from stand-replacing crown fires decayed much faster than biomass increased. During this period the C pool in the unburned lichen type chronosequence decreased from 807 to 480 mol C m-2. (2) Middle aged stands (40-100 years) being in a stage of maximum biomass accumulation were a net sink of 8-10 mol C m-2 year-1. (3)Maturestands (100 to > 350 years) continued to sequester C at a lower rate (0.8-2.5mol C m-2 year-1). Differences in the rates of C sequestration during the two later phases could be explained by the complex interaction between surface fire regime and site type. Recurrent surface fires resulted in enhanced mortality and regularly redistributed C from the living to the CWD pool thereby lowering the rate of C sequestration. Site quality determined the potential to recover from disturbance by fire events. Differences in site type did not correlate with soil and total ecosystem N pool size. However, the N status of needles as well as the N pool of physiologically active tissue was highest in the stands of the Vaccinium type. The woody C pool (biomass + CWD) was sensitive to differences in surface fire regime and site type. It was lowest in the heavily burned lichen type chronosequence (297 ± 108 mol C m-2), intermediate in the unburned and moderately burned lichen type chronosequence (571 ± 179 mol C m-2) and highest in the moderately burned Vaccinium type chronosequence (810 ± 334 mol C m-2). In contrast, the total soil C pool (organic plus mineral layer down to a depth of 25 cm) was independent of stand age, surface fire regimeand site type and fluctuated around a value of 250 mol C m-2. The organic layer C pool oscillated in response to recurring surface fires and its C pool was dependent on time since fire increasing at a rate of about 1.5 mol C m-2 year-during the first 40 years and then reaching a plateau of 170 mol C m-2. The total ecosystem N pool was 7.4 ± 1.5 mol N m-2 on average of which only 25 % were stored in biomass or coarse woody debris. Total ecosystem N was independent of stand age, surface fire regime and site type. No correlation was found between total ecosystem C and N pools. Average total ecosystem C:N ratio was 114 ± 35 mol C mol N-1. A conceptual model illustrating how changes in the regime of stand-replacing crown fires and recurrent surface fires and changes in site quality interact in determining the long-term C balance in Siberian Scots pine forests is presented.  相似文献   
2.
The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived. During daytime, the average CO2 uptake flux was ?3 µmol m?2s?1, whereas during night‐time characterised by a well‐mixed atmosphere the rates of release were typically about 6 µmol m?2s?1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* ≤ 0.08 ms?1). On average, 164 mmol CO2 m?2d?1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m?2 (180 g CO2 m?2) released during the 3‐month study period. The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of ?0.04 yr?1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long‐term influence on the net ecosystem exchange of this wind throw area. From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half‐life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long‐term carbon budget for naturally disturbed vs. commercially managed forests.  相似文献   
3.
Photosynthetic activities of common spruce (Picea abies (L.) Karst.) and Dahurian larch (Larix gmelinii (Rupr) Rupr ex Kuzen) were analyzed on the basis of datasets obtained for 110- to 130-year-old forest stands in Middle Russia and East Siberia. Using a Li-Cor 6200 gas analyzer, photosynthesis was measured in parallel with transpiration, stomatal conductance, CO2 concentrations in ambient air and intercellular spaces, the photosynthetically active radiation, air temperature, and air humidity. The data were examined within the framework of a biochemical model of photosynthesis of Farquhar et al. [1] in combination with the stomatal conductance model proposed by Jarvis [2]. The species-specific differences in carbon assimilation rates were discovered, and dependences of photosynthesis on the needle age, light regime, and growth conditions were revealed. The model parameters obtained were used to simulate the photosynthetic rates in spruce and larch trees at various weather conditions.  相似文献   
4.
5.
The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the “lichen” site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6–10 kgdw m−2 after 200 years depending on stand density and fire history compared to 20 kgdw m−2 in the “Vaccinium” type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5–1.5 and crown cover was 30–60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope −0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem functions predominantly via changes in fire regimes. Received: 2 July 1998 / Accepted: 10 June 1999  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号