首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   3篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1966年   1篇
排序方式: 共有51条查询结果,搜索用时 93 毫秒
1.
The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and “driver genes.” We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies “key” genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs.  相似文献   
2.
3.
Constitutively activated variants of small GTPases, which provide valuable functional probes of their role in cellular signaling pathways, can often be generated by mutating the canonical catalytic residue (e.g. Ras Q61L) to impair GTP hydrolysis. However, this general approach is ineffective for a substantial fraction of the small GTPase family in which this residue is not conserved (e.g. Rap) or not catalytic (e.g. Rheb). Using a novel engineering approach, we have manipulated nucleotide binding through structure-guided substitutions of an ultraconserved glycine residue in the G3-box motif (DXXG). Substitution of Rheb Gly-63 with alanine impaired both intrinsic and TSC2 GTPase-activating protein (GAP)-mediated GTP hydrolysis by displacing the hydrolytic water molecule, whereas introduction of a bulkier valine side chain selectively blocked GTP binding by steric occlusion of the γ-phosphate. Rheb G63A stimulated phosphorylation of the mTORC1 substrate p70S6 kinase more strongly than wild-type, thus offering a new tool for mammalian target of rapamycin (mTOR) signaling.  相似文献   
4.
5.
An automated docking procedure was used to study binding of a series of δ-selective ligands to three models of the δ-opioid receptor. These models are thought to represent the three ligand-specific receptor conformations. Docking results are in agreement with point mutation studies and suggest that different ligands—agonists and antagonists—may bind to the same binding site under different receptor conformations. Docking to different receptor models (conformations) also suggests that by changing to a receptor-specific conformation, the receptor may open or close different binding sites to other ligands. Figure  Ligands 5 (green) and 6 (orange) in bindingpocket BP1 of the R1 δ-opioid receptor model  相似文献   
6.
Integration of biological networks and gene expression data using Cytoscape   总被引:1,自引:0,他引:1  
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.  相似文献   
7.
While early 1990s reports showed the phosphorylation pattern of fetal tau protein to be similar to that of tau in paired helical filaments (PHF) in Alzheimer's disease (AD), neither the molecular mechanisms of the transient developmental hyperphosphorylation of tau nor reactivation of the fetal plasticity due to re-expression of fetal protein kinases in the aging and AD human brain have been sufficiently investigated. Here, we summarize the current knowledge on fetal tau, adding new data on the specific patterns of tau protein and mRNA expression in the developing human brain as well as on change in tau phosphorylation in the perforant pathway after entorhinal cortex lesion in mice. As fetal tau isoform does not form PHF even in a highly phosphorylated state, understanding its expression and post-translational modifications represents an important avenue for future research towards the development of AD treatment and prevention.  相似文献   
8.
An analysis of the H(2)O(2)-induced breakdown and transformation of different keto-monosaccharides at physiological concentrations reveals that glycolate and other short-chained carbohydrates and organic acids are produced. Depletion of monosaccharides and glycolate synthesis occurs at increased rates as the length of the carbohydrate chain is decreased, and is significantly increased in the presence of trace amounts of Fe(2+) ions (10 microM). Rates of monosaccharide depletion (initial concentration of 3 mM) observed were up to 1.55 mmol h(-1) in the case of fructose, and 2.59 mmol h(-1) in the case of dihydroxyacetone, depending upon pH, H(2)O(2) concentration, temperature and the presence or absence of catalytic amounts of Fe(2+). Glycolate was produced by dihydroxyacetone cleavage at rates up to 0.45 mmol h(-1) in the absence, and up to 1.88 mmol h(-1) in the presence of Fe(2+) ions (pH 8). Besides glycolate, other sugars (ribose, glyceraldehyde, glucose), glucitol (sorbitol) and organic acids (formic and 2-oxogluconic acid) were produced in such H(2)O(2)-induced reactions with fructose or dihydroxyacetone. EPR measurements demonstrated the participation of the OH radical, especially at higher pH. Presence of metal ions at higher pH values, resulting in increased glycolate synthesis, was accompanied by enhanced hydroxyl radical generation. Observed changes in intensity of DEPMPO-OH signals recorded from dihydroxyacetone and fructose reactions demonstrate a strong correlation with changes in glycolate yield, suggesting that OH radical formation enhances glycolate synthesis. The results presented suggest that different mechanisms are responsible for the cleavage or other reactions (isomerisation, auto- or free-radical-mediated oxidation) of keto-monosaccharides depending of experimental conditions.  相似文献   
9.
Plasmacytoid dendritic cells (pDCs) recognize pathogen-associated molecules, particularly viral, and represent an important mechanism in innate defense. They may however, also have roles in steady-state tolerogenic responses at mucosal sites. pDCs can be isolated from blood, mucosa, and lymph nodes (LNs). Although pDCs can express peripherally derived Ags in LNs and at mucosal sites, it is not clear whether pDCs actually migrate from the periphery in lymph or whether LN pDCs acquire Ags by other mechanisms. To determine whether pDCs migrate in lymph, intestine or liver-draining LNs were removed and thoracic duct leukocytes (TDLs) were collected. TDLs expressing MHC-II and CD45R, but not TCRalphabeta or CD45RA, were then analyzed. These enriched TDLs neither transcribe type I IFNs nor secrete inflammatory cytokines in response to viral stimuli in vitro or after a TLR7/8 stimulus in vivo. In addition, these TDLs do not express CD5, CD90, CD200, or Siglec-H, but do express Ig, and therefore represent B cells, despite their lack of CD45RA expression. Intestinal and hepatic lymph are hence devoid of bona fide pDCs under both steady-state conditions and after TLR7/8 stimulation. This shows that any role for pDCs in Ag-specific T cell activation or tolerance must differ from the roles of classical dendritic cells, because it cannot result from peripheral Ag capture, followed by migration of pDCs via lymph to the LN.  相似文献   
10.
Appropriate cell cycle checkpoint control is essential for the maintenance of cell and organismal homeostasis. Members of the Nek (NIMA-related kinase) family of serine/threonine protein kinases have been implicated in the regulation of various aspects of the cell cycle. We explored the cellular functions of Nek10, a novel member of the Nek family, and demonstrate a role for Nek10 in the cellular UV response. Nek10 was required for the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling upon UV irradiation but not in response to mitogens, such as epidermal growth factor stimulation. Nek10 physically associated with Raf-1 and MEK1 in a Raf-1-dependent manner, and the formation of this complex was necessary for Nek10-mediated MEK1 activation. Nek10 did not affect the kinase activity of Raf-1 but instead promoted the autophosphorylation-dependent activation of MEK1. The appropriate maintenance of the G(2)/M checkpoint following UV irradiation required Nek10 expression and ERK1/2 activation. Taken together, our results uncover a role for Nek10 in the cellular response to UV irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号