首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1469篇
  免费   100篇
  2023年   7篇
  2022年   2篇
  2021年   34篇
  2020年   15篇
  2019年   19篇
  2018年   20篇
  2017年   23篇
  2016年   29篇
  2015年   62篇
  2014年   92篇
  2013年   115篇
  2012年   142篇
  2011年   112篇
  2010年   105篇
  2009年   81篇
  2008年   110篇
  2007年   131篇
  2006年   103篇
  2005年   71篇
  2004年   82篇
  2003年   58篇
  2002年   68篇
  2001年   7篇
  2000年   9篇
  1999年   12篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1569条查询结果,搜索用时 15 毫秒
1.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
2.

Background  

Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica), a natural pathogen of the Brassicaceae Arabidopsis thaliana.  相似文献   
3.
4.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient''s age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.  相似文献   
5.
6.
Compelling evidence has been obtained in favour of the idea that the nuclear surface of higher plant cells is a microtubule-nucleating and/or organizing site (MTOC), in the absence of defined centrosomes. How these plant MTOC proteins are redistributed and function during the progression of the cell cycle remains entirely unknown. Using a monoclonal antibody (mAb 6C6) raised against isolated calf thymus centrosomes and showing apparent reaction with the plant nuclear surface, we followed the targeted antigen distribution during mitosis and meiosis of higher plants. Immunoblot analysis of protein fractions from Allium root meristematic cell extracts probed with mAb 6C6 reveals a polypeptide of an apparent Mr of 78000. In calf centrosome extracts, a polypeptide of comparable molecular mass is found in addition to a major antigen of Mr 180000 after mAb 6C6 immunoblotting. During mitotic initiation, the plant antigen is prominent on the periphery of the prophase nucleus. When the nuclear envelope breaks down, the antigen suddenly becomes associated with the centromere-kinetochores until late anaphase. In telophase, when the nuclear envelope is being reconstructed, it is no longer detected at the kinetochores but is solely associated again with the nuclear surface. This antigen displays a unique spatial and temporal distribution, which may reflect the pathway of plant protein(s) between the nuclear surface and the kinetochores under cell cycle control. So far, such processes have not been described in higher plant cells. These observations shed light on the putative activity of the plant kinetochore as a protein transporter. They also suggest that a plant centrosome-like antigen may have different cytoskeletal related functions depending on cell cycle regulated changes in its subcellular distribution.Abbreviations mAb monoclonal antibody - MSB microtubule stabilizing buffer - TBS Tris buffered saline - MTOC microtubule organizing centre  相似文献   
7.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
8.
Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., a large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies confirm that INLA provides accurate approximation of posterior estimates and to reduced computation time and variability of estimates compared to frailtypack in the situations considered. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where INLA has a reduced variability for the association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study. Our study suggests that the Bayesian approach using the INLA algorithm enables to fit complex joint models that might be of interest in a wide range of clinical applications.  相似文献   
9.
Reduced dipeptides with the general formula RCO-Xaa- rXbb-N+HR′R′′ (rXbb, reduced analogue of residue Xbb: NH-Cα HR1 -Cr H2) are shown to adopt a folded conformation in solution and in the solid state. The protonated reduced amide bond is an active proton donor capable of interacting with a peptide carbonyl to give a strong hydrogen bond topologically equivalent to the i+2 or i+3? i interaction. The resulting conformation is similar to the γ- or β-turn structure found in peptides and proteins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号