首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19155篇
  免费   1018篇
  国内免费   25篇
  2023年   164篇
  2022年   219篇
  2021年   641篇
  2020年   424篇
  2019年   448篇
  2018年   653篇
  2017年   617篇
  2016年   812篇
  2015年   919篇
  2014年   1167篇
  2013年   1598篇
  2012年   1693篇
  2011年   1512篇
  2010年   883篇
  2009年   774篇
  2008年   912篇
  2007年   857篇
  2006年   719篇
  2005年   664篇
  2004年   548篇
  2003年   461篇
  2002年   415篇
  2001年   340篇
  2000年   313篇
  1999年   286篇
  1998年   109篇
  1997年   82篇
  1996年   79篇
  1995年   78篇
  1994年   59篇
  1993年   59篇
  1992年   163篇
  1991年   155篇
  1990年   131篇
  1989年   102篇
  1988年   135篇
  1987年   107篇
  1986年   86篇
  1985年   86篇
  1984年   83篇
  1983年   55篇
  1982年   43篇
  1981年   47篇
  1980年   44篇
  1979年   61篇
  1978年   38篇
  1977年   49篇
  1976年   33篇
  1975年   33篇
  1972年   31篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.  相似文献   
2.
The biosynthetic enzyme peptidylglycine alpha-amidating monooxygenase catalyzes the formation of a variety of biologically active alpha-amidated peptides from respective COOH-terminal glycine-extended peptide precursors. Peptidylglycine alpha-amidating monooxygenase activity is dependent on copper, ascorbate, and molecular oxygen and is inhibited by the relatively selective copper chelator N,N-diethyldithiocarbamate or its disulfide dimer disulfiram (Antabuse). In the present study, chronic disulfiram treatment (100 mg/kg/day, for 12-25 days) resulted in significant changes in several neurochemical parameters in the mouse central nervous system, including levels of substance P-like, unamidated substance P-Gly-like, and protease-generated substance P-Gly-Lys-like immunoreactivities (SP-LI, SP-G-LI, and SP-G-K-LI, respectively). Combined high performance liquid chromatography/radioimmunoassay analyses of the extracted SP-LI, SP-G-LI, and SP-G-K-LI species indicated very similar chromatographic and immunochemical behavior as demonstrated for chemically authentic peptide standards. Additionally, changes in levels of monoamines and their metabolites were observed after drug administration. Complementary immunohistochemical analyses using affinity-purified anti-SP-G sera localized these drug-induced changes in levels of immunoreactive unamidated precursor to neural elements that normally express SP. As a functional corollary to alterations in neurochemical parameters, we observed significant disulfiram-induced increases in pain thresholds, potentiated by capsaicin treatment. Overall, our results indicate that the observed changes in steady state levels of immunoreactive SP and of the immature COOH-terminal extended forms of SP may reflect compensatory biosynthetic and posttranslational processing events in SP-containing neural systems after pharmacological challenge.  相似文献   
3.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
4.
5.
Peptide transport in Saccharomyces cerevisiae is controlled by three genes: PTR1, PTR2, and PTR3. PTR1 was cloned and sequenced and found to be identical to UBR1, a gene previously described as encoding the recognition component of the N-end-rule pathway of the ubiquitin-dependent proteolytic system. Independently derived ubr1 mutants, like ptr1 mutants, were unable to transport small peptides into ceils. Concomitantly, ptr1 mutants, like ubr1 mutants, were unable to degrade an engineered substrate of the N-end-rule pathway. Further, ptr1 mutants did not express PTR2, a gene encoding the integral membrane component required for peptide transport in S. cerevisiae. These results establish a physiological role for a protein previously known to be required for the degradation of N-end-rule substrates. Our findings show that peptide transport and the ubiquitin pathway—two dynamic phenomena universal to eukaryotic cells—share a common component, namely UBR1/PTR1.  相似文献   
6.
7.
8.
Methods for detecting the genomic signatures of natural selection have been heavily studied, and they have been successful in identifying many selective sweeps. For most of these sweeps, the favored allele remains unknown, making it difficult to distinguish carriers of the sweep from non-carriers. In an ongoing selective sweep, carriers of the favored allele are likely to contain a future most recent common ancestor. Therefore, identifying them may prove useful in predicting the evolutionary trajectory—for example, in contexts involving drug-resistant pathogen strains or cancer subclones. The main contribution of this paper is the development and analysis of a new statistic, the Haplotype Allele Frequency (HAF) score. The HAF score, assigned to individual haplotypes in a sample, naturally captures many of the properties shared by haplotypes carrying a favored allele. We provide a theoretical framework for computing expected HAF scores under different evolutionary scenarios, and we validate the theoretical predictions with simulations. As an application of HAF score computations, we develop an algorithm (PreCIOSS: Predicting Carriers of Ongoing Selective Sweeps) to identify carriers of the favored allele in selective sweeps, and we demonstrate its power on simulations of both hard and soft sweeps, as well as on data from well-known sweeps in human populations.  相似文献   
9.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号