首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2000年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1958年   4篇
  1955年   1篇
  1954年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
排序方式: 共有69条查询结果,搜索用时 109 毫秒
1.
The integument of Tubiluchus philippinensis van der Land, 1984 has been investigated by means of scanning and transmission electron microscopy. The ultrastructure of the cuticle corresponds principally to what has been found in Priapulidae. The tumuli are mere cuticular thickenings. Setae, tubuli, flosculi and scalids are receptor organs. Tubuli additionally serve a second function: they produce a secretion. The male genital area is equipped with various receptor organs, the internal morphology of which has been described. All receptor cells are characterized by apical cilia, which may be surrounded by a circlet of microvilli. They sometimes bear a rather complicated rootlet apparatus.  相似文献   
2.
The contributions of ultrastructural research to the elucidationof invertebrate evolution are discussed by means of a numberof selected examples. Studies of the fine structure of the integumentof Aschelminthes and Platyhelminthes illustrate the method ofinterpretation. In addition, the following subjects and theirsignificance for phylogeny are treated: annelid setae, sensillaof Pentastomida, choanocyte-like cells, epitheliomuscular cells,podocytes, gills of Polychaeta and lungs of Decapoda, and spermatozoa  相似文献   
3.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   
4.
It is often hypothesized that slow inbreeding causes less inbreeding depression than fast inbreeding at the same absolute level of inbreeding. Possible explanations for this phenomenon include the more efficient purging of deleterious alleles and more efficient selection for heterozygote individuals during slow, when compared with fast, inbreeding. We studied the impact of inbreeding rate on the loss of heterozygosity and on morphological traits in Drosophila melanogaster. We analysed five noninbred control lines, 10 fast inbred lines and 10 slow inbred lines; the inbred lines all had an expected inbreeding coefficient of approximately 0.25. Forty single nucleotide polymorphisms in DNA coding regions were genotyped, and we measured the size and shape of wings and counted the number of sternopleural bristles on the genotyped individuals. We found a significantly higher level of genetic variation in the slow inbred lines than in the fast inbred lines. This higher genetic variation was resulting from a large contribution from a few loci and a smaller effect from several loci. We attributed the increased heterozygosity in the slow inbred lines to the favouring of heterozygous individuals over homozygous individuals by natural selection, either by associative over‐dominance or balancing selection, or a combination of both. Furthermore, we found a significant polynomial correlation between genetic variance and wing size and shape in the fast inbred lines. This was caused by a greater number of homozygous individuals among the fast inbred lines with small, narrow wings, which indicated inbreeding depression. Our results demonstrated that the same amount of inbreeding can have different effects on genetic variance depending on the inbreeding rate, with slow inbreeding leading to higher genetic variance than fast inbreeding. These results increase our understanding of the genetic basis of the common observation that slow inbred lines express less inbreeding depression than fast inbred lines. In addition, this has more general implications for the importance of selection in maintaining genetic variation.  相似文献   
5.
6.
The northern pike Esox lucius L. is a freshwater fish exhibiting pronounced population subdivision and low genetic variability. However, there is limited knowledge on phylogeographical patterns within the species, and it is not known whether the low genetic variability reflects primarily current low effective population sizes or historical bottlenecks. We analysed six microsatellite loci in ten populations from Europe and North America. Genetic variation was low, with the average number of alleles within populations ranging from 2.3 to 4.0 per locus. Genetic differentiation among populations was high (overall θST = 0.51; overall ρST = 0.50). Multidimensional scaling analysis of genetic distances between populations and spatial analysis of molecular variance suggested a single phylogeographical race within the sampled populations from northern Europe, whereas North American and southern European populations were highly distinct. A population from Ireland was monomorphic at all loci, presumably reflecting founder events associated with introduction of the species to the island in the sixteenth century. Bayesian analysis of demographic parameters showed differences in θ (a product of effective population size and mutation rate) among populations from large and small water bodies, but the relative differences in θ were smaller than expected, which could reflect population subdivision within the larger water bodies. Finally, the analyses showed drastic population declines on a time scale of several thousand years within European populations, which we ascribe to either glacial bottlenecks or postglacial founder events.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 91–101.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号