首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   7篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1980年   1篇
  1967年   1篇
  1954年   1篇
排序方式: 共有60条查询结果,搜索用时 218 毫秒
1.
2.
The single most difficult problem in phylogenetic analysis is deciding whether a shared taxonomic character is due to common ancestry or one that appeared independently due to convergence, parallelism, or reversion to an ancestral state. Mammalian L1 retrotransposons undergo periodic amplifications in which multiple copies of the elements are interspersed in the genome. Because these elements apparently are transmitted only by inheritance and are retained in the genome, a shared L1 amplification event can only be an inherited ancestral character. We propose that L1 amplification events can be an excellent tool for analyzing mammalian evolution and demonstrate here how we addressed several refractory problems in rodent systematics using L1 DNA as a taxonomic character.   相似文献   
3.
Secondary structure-forming DNA motifs have achieved infamy because of their association with a variety of human diseases and cancer. The 3rd FASEB summer conference on dynamic DNA structures focused on the mechanisms responsible for the instabilities inherent to repetitive DNA and presented many exciting and novel aspects related to the metabolism of secondary structures. In addition, the meeting encompassed talks and posters on the dynamic structures that are generated during DNA metabolism including nicked DNA, Holliday junctions and RNA:DNA hybrids. New approaches for analysis and sequencing technologies put forth secondary structures and other DNA intermediates as vital regulators of a variety of cellular processes that contribute to evolution, polymorphisms and diseases.  相似文献   
4.
FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process.  相似文献   
5.
Handa V  Saha T  Usdin K 《Nucleic acids research》2003,31(21):6243-6248
We show here that under physiologically reasonable conditions, CGG repeats in RNA readily form hairpins. In contrast to its DNA counterpart that forms a complex mixture of hairpins and tetraplexes, r(CGG)22 forms a single stable hairpin with no evidence for any other folded structure even at low pH. RNA with the sequence (CGG)9AGG (CGG)12AGG(CGG)97, found in a fragile X syndrome pre-mutation allele, forms a number of different hairpins. The most prominent hairpin forms in the 3′ part of the repeat and involves the 97 uninterrupted CGG repeats. In contrast to the CUG-RNA hairpins formed by myotonic dystrophy type 1 repeats, we found no evidence that CGG-RNA hairpins activate PKR, the interferon-inducible protein kinase that is activated by a wide range of double-stranded RNAs. However, we do show that the CGG-RNA is digested, albeit inefficiently, by the human Dicer enzyme, a step central to the RNA interference effect on gene expression. These data provide clues to the basis of the toxic effect of CGG-RNA that is thought to occur in fragile X pre-mutation carriers. In addition, RNA hairpins may also account for the stalling of the 40S ribosomal subunit that is thought to contribute to the translation deficit in fragile X pre-mutation and full mutation alleles.  相似文献   
6.
7.
8.
A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg2+ in the γ-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.  相似文献   
9.
Abstract A variety of plasmids has been identified as covalently closed circular and linear DNA in certain Actinomycetes, such as Streptomyces . This paper describes the first isolation and characterisation of a plasmid from the genus Nocardia . The plasmid pKU100 isolated from Nocardia corallina is a cccDNA molecule, 2.7 kb in length. This plasmid has been mapped with a wide variety of restriction enzymes and contains a number of unique restriction sites making it suitable for development as a cloning vector.  相似文献   
10.
Summary All modern mammals contain a distinctive, highly repeated (⩾50,000 members) family of long interspersed repeated DNA called the L1 (LINE 1) family. While the modern L1 families were derived from a common ancestor that predated the mammalian radiation ∼80 million years ago, most of the members of these families were generated within the last 5 million years. However, recently we demonstrated that modern murine (Old World rats and mice) genomes share an older long interspersed repeated DNA family that we called Lx. Here we report our analysis of the DNA sequence of Lx family members and the relationship of this family to the modern L1 families in mouse and rat. The extent of DNA sequence divergence between Lx members indicates that the Lx amplification occurred about 12 million years ago, around the time of the murine radiation. Parsimony analysis revealed that Lx elements were ancestral to both the modern rat and mouse L1 families. However, we found that few if any of the evolutionary intermediates between the Lx and the modern L1 families were extensively amplified. Because the modern L1 families have evolved under selective pressure, the evolutionary intermediates must have been capable of replication. Therefore, replicationcompetent L1 elements can reside in genomes without undergoing extensive amplification. We discuss the bearing of our findings on the evolution of L1 DNA elements and the mammalian genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号